

MIDSUMMER

Technical Reference
Manual

26 October, 2002

Revision 6
Atari Corp.

Title: "Midsummer Technical Reference Manual"

(Revision 6)

Author and generous donor: John Mathieson
Donated to: Cédric "QueST" Laguerre

Downloaded on the Toxic-Mag site:

http://toxicmag.atari.org/

Titre : "Midsummer Technical Reference Manual"
(Revision 6)

Auteur et généreux donateur : John Mathieson

Don à titre personnel à : Cédric "QueST" Laguerre

Téléchargé sur le site du Toxic-Mag :

http://toxicmag.atari.org/

Cédric "QueST" Laguerre

wrathchild_@yahoo.fr

Page 2 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Table of Contents

Introduction 3
Regarding This Documentation...3
What is Midsummer? ..3
Midsummer Overview..3
Memory..5

Video Generator and Object Processor 8
Overview..8
Object Processor Performance ...8
Memory controller..8
Microprocessor Interface ...8
Memory Map..8
Object definitions...8
Description of Object Processor/Pixel path ...8
Refresh Mechanism ..8
Interrupts ...8

Colour Mapping 8
Introduction..8
The CRY Colour Scheme..8

The Jaguar RISC Processors 8
What is a Jaguar RISC Processor? ..8
Programming the J-RISC Processor...8
Design Philosophy...8
Pipe-Lining ..8
Memory Interface...8
Load and Store Operations ...8
DMA Controller ..8
Arithmetic Functions..8
Interrupts ...8
Sharing Hardware..8
Program Control Flow ...8
Multiply and Accumulate Instructions ..8
Matrix Multiplies...8
Divide Unit ...8
Register File ..8
External CPU Access ..8
Pack and Unpack ..8
Instruction Set..8
Writing Fast J-RISC Programs..8

Graphics Processor - GPU 8
Memory Map..8
Internal Registers ..8

RISC Central Processor - RCPU 8
Cache Controller ...8
RCPU Memory Map ..8
Internal Registers ..8

Digital Sound Processor - DSP 8
Introduction..8
Memory Map..8
Circular Buffer Management ...8
Private Memory Interface and PCM Processor ...8

Blitter 8
What is the Blitter? ..8
Programming the Blitter...8
Blitter Register Set ..8
Address Generation ..8
Data Path ..8
Bus Interface ...8
Controlling State Machines ...8
Register Description ..8
Address Registers ...8
Control Registers...8
Data Registers...8
Texture Unit Control Registers ..8
Modes of Operation ...8

Polygon Drawing... 8
Texture Mapping ... 8

Puck 8
Memory Controller... 8
Frequency dividers.. 8
Programmable Timers .. 8
Interrupts... 8
Synchronous Serial Interface.. 8
Synchronous Serial Receiver / Transmitter .. 8
CD DMA Controller ... 8
Network UART.. 8
Joystick Interface .. 8
General Purpose IO Decodes... 8

Appendices 8
The COBWEB Development Board ... 8
Data Organisation - Big and Little Endian... 8
Oberon and Puck Bugs List .. 8
Oberon Bugs... 8

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 3

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Introduction

Midsummer is the project name for the second generation Jaguar system (Jaguar Two).

This document is the Midsummer Technical Reference Manual - it is a definitive reference work for the
programmer's view of the Midsummer chips. It is neither a hardware designer’s reference work nor a
guide to the Jaguar console. It is written by the hardware designers, and so is not ideal as an introduction
to Midsummer or an explanation of how best to use it, but it should be used as the definitive reference
work.

Regarding This Documentation

This document is still work in progress. It was based on the equivalent Jaguar One document and may
still contain information that is no longer true. It may also have errors, omissions and things that are not
clear. If so, I want to know if you find any. I apologise to my British readers for the encroachment of
American spelling.

What is Midsummer?

“More strange than true. I never may believe
These antique fables, nor these fairy toys.”

 Act V. Scene 1.

Midsummer is based around a pair of custom chips, called Oberon and Puck, which are primarily
intended to be the heart of a mega high-performance computer for games and leisure. Oberon and Puck
replace Tom and Jerry from the original Jaguar system.

Oberon is the King of the fairies and Puck is Robin Goodfellow, his side-kick, from “A Midsummer Night’s
Dream” by William Shakespeare.

Midsummer Overview

Midsummer is an evolutionary development of Jaguar to give significant performance gains for 3D games.
It offers greatly improved performance for a small increase in system cost. It is intended to be software
compatible with Jaguar and so will run the existing library of games. The following areas of the system
have substantially improved performance:

• polygon rendering speed
• texture mapped polygons
• computational ability
• audio synthesis

Midsummer is intended to be easy to program in a high-level language. It has an additional RISC
processor, the RCPU, with an instruction cache to improve the performance of C programs.

This diagram summarises the system architecture of Midsummer. It does not show the peripheral
connections, or the 68000, which is still present only for compatibility reasons and to boot the system.

RCPU
32-bit RISC processor
64-bit DMA to main bus

4K program cache

1K data RAM

GPU
32-bit RISC processor
64-bit DMA to main bus

4K program/data RAM

2-way set associative

Blitter - 64 bit co-processor
Texture rendering engine
Polygons rendered in hardware
Z-buffering, anti-aliased texture

8K texture buffer

8K texture ROM

64-bit 133 Mbyte/sec
Main Bus

DSP
32-bit RISC processor
64-bit DMA to main bus

8K program/data RAM

DSP external sample memory
up to 1 MB DRAM or ROM

Object Processor
64-bit display generator

System CPU

3D Rendering Sub-System

Audio Sub-System

Display Generator

16-bit stereo audio

24-bit RGB

DRAM

2 Mbyte (4 Mbyte possible)
64-bit DRAM or 16-bit SDRAM

Buffered expansion bus
up to 6 Mbyte ROM cartridge
CD-ROM drive (optional)

The main system bus is 64-bit, and the object display processor and blitter are both 64-bit co-processors
on this bus.

The RCPU, GPU and DSP are all based on the same Jaguar RISC architecture. All three processors are
32-bit RISC, executing close to one instruction per clock cycle. They are tuned for graphics and audio
processing; and offer single cycle multiply operations as well as normal RISC functions.

RCPU

The RCPU is new for Midsummer, and has been specifically tuned for running C code. It is intended to
act as the CPU of the system, and is the geometry engine for 3D graphics.

• 32-bit RISC processor
• 4K bytes of 2-way set-associative cache
• 1K bytes fast local data RAM
• cache line fill operations at the full 64-bit bus rate (133 MB/s)
• extended precision (16 x 32) single cycle multiplier, and fast divider
• 64-bit DMA engine to and from system DRAM at full bus rate

GPU

The GPU and Blitter are the rendering engine for 3D graphics. The GPU is very similar to the RCPU, and
is coupled on a fast local 32-bit bus to the blitter. The GPU is intended to calculate blitter polygon
parameters while the blitter is operating.

• 32-bit RISC processor
• 4K bytes of fast local program/data RAM
• 8K bytes of RAM either for texture buffers or for further program/data RAM
• single cycle multiplier, and fast divider

Page 4 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

• DMA engine to and from system DRAM at full bus rate

Blitter

The Blitter is a 64-bit rendering engine. It can render triangles as a single operation, and these triangles
may be any combination of Gouraud shaded, texture mapped and Z-buffered.

• 64-bit flexible rendering co-processor
• 8K bytes of texture buffer RAM (can be shared with GPU)
• 8K bytes of generic texture ROM
• texture mapping from local texture buffer or from main memory
• triangle draw as a single operation
• Z-buffering
• anti-aliased texture mapping (bi-linear interpolation)
• true-perspective texture mapping
• Gouraud shading, fog effects, colour blending and alpha-mixing all possible on texture data

Object Processor

The Object Processor is a very flexible 64-bit list processor which generates the display. It builds the
display in a local line buffer from multiple bit-maps, which may be at different color resolutions. It can
perform scaling, shading and fog effects on bit-map data. It can behave like a traditional sprite engine, but
is far more flexible and programmable.

• 64-bit display generator
• up to 24-bits per pixel
• supports bit-maps at mixed color depths
• smooth image scaling (8.8 bit resolution)
• bit-map darkening, lightening and fog effects
• supports RGB or CRY color schemes
The CRY color scheme uses 8-bits for intensity and 8-bits for chroma, allowing smooth Gouraud shading
from 16-bit pixels.

DSP

The DSP is a 32-bit RISC processor, based on the same RISC core as the GPU and RCPU. It contains a
local PCM sample generator coupled to private sample memory which can generate 24 voices at 44 KHz
in parallel with the flexibility and power of the DSP.

• 32-bit RISC processor
• 8K bytes of fast local program/data RAM
• single cycle multiply/accumulate, with 40-bit accumulator precision
• PCM sample generator from private memory, up to 1 Mbyte DRAM or ROM
• PCM samples can be interpolated 8-bit, 16-bit and 8-bit µ-law compressed samples
• synchronous serial interface to CD quality DAC
• 64-bit DMA engine to and from system DRAM at full bus rate

System Performance

The Midsummer system is intended to be run from a 33 MHz clock. This figure is not yet confirmed, and
could possibly be higher or lower. At 33 MHz the main system bus has a sustained burst rate of 133
Mbytes / sec. Assuming 16-bit pixels, which may be RGB or CRY, the blitter and object processor can
both write and read pixels at 66 Mpixels/second.

This gives the blitter a shaded, texture-mapped polygon rate of 750K polygons/second. This assumes a
10x10 triangle containing 50-pixels. Of course, realistic system performance will be lower as this assumes
no overhead for computation or for display generation time.

The Jaguar RISC processors can execute one instruction per clock cycle. They therefore have a peak
instruction through-put of 33 MIPs, and a realistic performance level of 25-30 MIPs. This gives a
combined system performance approaching 100 MIPs, as all three processors run in parallel from local
memory. They can also execute code from main DRAM, although only the RCPU is well suited to this as
it has an instruction cache.

Each of the RISC processors contains a 64-bit DMA engine which can transfer data to and from their local
RAM at the full bus rate of 133 MB/sec. The data stream from the CD, if present, can be DMA transferred
in system DRAM. Many other small but significant improvements have been made, and some restrictions
and bugs in Jaguar have been removed.

Midsummer compared to Jaguar

Midsummer is closely based on the original Jaguar system. It is intended to be software compatible with
it, and is a superset of the Jaguar system. It uses newer technology to speed up the Jaguar system,
address short-comings in its architecture, and to make major improvements to the specification.

Large parts of this documentation cover areas of the design that have not changed, so you should look
out for the following changes:

1. There is an additional Jaguar RISC (J-RISC) processor, known as the RCPU, with a simple program
cache. It is intended to perform the functionality of the CPU, acting as a geometry engine, and it is
well suited to executing compiled code.

2. The blitter can now draw polygons as a single operation. These may be just filled, or any combination
of Gouraud shaded, Z-buffered, and texture mapped.

3. The blitter can now draw texture maps at full bus speed a maximum of one phrase per two clock
cycles, from internal texture memory, and can also operate from external texture RAM more
efficiently then before.

4. The blitter can anti-alias textures as it renders them.

5. The texture mapping and Gouraud shade modes can be combined to give shaded texture-mapped
polygons, with Z-buffering as well if required. These can also be drawn at full bus speed. The
shading is a multiplicative mix of the texture data and another colour, allowing lightening, darkening,
distance-haze and other effects.

6. The intensity calculations are now carried out with an extended range, using an eleven bit signed
integer to represent intensity, this value being clipped (saturated) only when the pixels are drawn.

7. A subset of the blitter registers are double-buffered, so that a polygon drawing engine can program
the parameters for a polygon blit while the previous blit is still under way.

8. There is no need to initialise all four I and Z values (or texture pointers) for a phrase mode blit, the
blitter can automatically initialise them appropriately.

9. The blitter address generators now both have clip window and mask functions. Formerly A1 had a
clip window and A2 had a mask.

10. The GPU has an overflow flag which reflects signed arithmetic overflow from add or subtract
operations, and also gives the state of the bit modified by bit clear and set operations before the clear
or set.

11. The jump condition codes have been extended to cope with the new overflow flag, and now include
all the conditions available on general purpose micro-processors, e.g. the 68000.

12. The NOP instruction has been extended, so that if its operands are not zero then it becomes an
unconditional jump relative with a ten bit signed jump offset, giving an increased range.

13. Byte and word transfers to GPU RAM are now possible.

14. The J-RISC processors all contain a simple DMA transfer engine, which allows full bus rate phrase
mode transfers between internal and external memory. This speeds up program loads and data set
transfers.

15. The PACK and UNPACK instruction can now operate on RGB16 pixels as well as CRY.

16. The object processor can now clip at a right hand side value of less than 720 by setting the limit
register.

17. The object processor can force the select bit for mixed CRY/RGB screens on a per-object basis.

18. The object processor supports line-doubling so that a TV picture can be displayed on a VGA monitor.

19. The object processor can multiplicatively mix the pixel color with a “fade to” color according to a mix
control value. A new object type defines the mixer control value and the mixed color.

20. RMW objects can now have double the “strength”.

21. Scaled objects may now be controlled to a higher precision, and the horizontal remainder may now
be defined.

22. Some additional extended jump condition codes allow debug functions, such as interrupt, stop and
pause.

In addition, some bugs that created problems for Jaguar One programmers have been fixed:

1. Score-board protection for writes is available, so that writes do not occur out of order. This is enabled
by the GPU enhanced mode bit.

2. GPU code can be executed out of external RAM.

3. The blitter address flags for Y add control are now properly differentiated, there is an enable bit in the
Collision control and Mode register that has to be set to fix this bug.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 5

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

4. The data register of an indexed store instruction now has full score-board protection.

5. Problems related to MOVEI instructions at the beginning of a program, particularly when single
stepping, have been resolved.

6. Unscaled objects are now fetched at full bus speed.

7. The pixel pre-scaler is now reset on the last line of the display, so the display need not be over-
scanned to conceal it.

8. Two divides may follow each other when one uses the quotient of another.

9. The DSP external DMA interface has been completely overhauled, and will now support low and high
priority transfers; as well as arbitrary load/store combinations and alignments.

10. A variety of problems related to blitter window clipping have been resolved.

Jaguar Terminology

The computer world has launched into the 64 bit era without a sensible naming convention for a 64 bit
datum. Double-long-word is ridiculous and confusing. We therefore refer to 64 bits of data as a phrase.
This is logical and short. In Jaguar the various sizes of data are named as follows:

Bits Name

4 Nibble

8 Byte

16 Word

32 Long

64 Phrase
You may be used to calling 32 bits a long-word, or sometimes just a word. We call it a long word too
sometimes, but usually just long for short! As far as I know, nobody else uses phrase or has a better
name for it.

Memory

The Midsummer system has a 24 bit address bus, and so has a 16 Megabyte address range. This space
contains the DRAM, cartridge ROM, boot ROM, on-chip SRAM and hardware registers. These have a
variety of speeds and data bus widths, so the memory controller is flexible enough to support bus masters
(processors) from 16 to 64 bits, and memory widths from 8 to 64 bits. All the processors can access all of
the memory, and so there is a single system wide memory map. The processor do not usually have to be
aware of the memory width, as the memory controller will take care of this for them.

The main system bus, which is connected to the DRAM and ROM as well as to both the ASICs and the
68000, can only be owned by one processor at a time. It is therefore a precious resource, and should be
shared carefully so that all the processors can make use of it. This is not too big a problem, as the bus is
very fast. 64 bit DRAM can be read from or written to every two clock cycles within the same DRAM page,
so the transfer rate is 106 MB/sec at the Jaguar One clock speed of 26.6 MHz.

The three J-RISC processors all have private internal busses, so they can access their local memory
without using the main bus, allowing them to execute in parallel with the main system.

Bus Arbitration

Bus ownership is controlled by the bus arbiter. A processor requests the bus, and if the current owner is
at a lower priority level than the requesting processor, then the current owner loses the bus at the end of
the current memory cycle, and the requesting processor is granted the bus. When this higher level
processor has completed its transfer(s) it releases its request, and the bus is handed back to the lower
priority processor. If a higher priority processor has the bus, then the requesting processor has to wait.
The J-RISC processors can have pending data transfers in the background to some extent (i.e. execution
continues), but ultimately they will get held up in these circumstances.

The bus is prioritised as follows:

Highest priority

1. Refresh
2. CD DMA at high priority
3. DSP at DMA priority
4. RCPU at DMA priority

5. GPU at DMA priority
6. Blitter at high priority
7. Object Processor
8. CD DMA at normal priority
9. DSP at normal priority
10. RCPU at normal priority
11. RCPU cache fetches at high priority
12. CPU under interrupt
13. GPU at normal priority
14. Blitter at normal priority
15. RCPU cache fetches at normal priority
16. Bus hold by the cache controller (no fetches occur)
17. CPU
Lowest priority

Efficient use of this bus is important to getting the best performance out of the Midsummer system. Video
and Audio present real time requirements; the object processor must complete processing the object list
within one video line, and audio sample and control data may need to be fetched within one sample
period. The allocation of priority levels where these are selectable should be made carefully, and may
require some thought and experimentation.

Dynamic RAM

The main RAM in the system is one or two banks of sixty-four bit wide dynamic RAM. Currently the
system contains a single two megabyte bank of DRAM. This RAM is currently fast page-mode DRAM,
which means that within a page transfers can be made very rapidly.

DRAM is organised internally in a rectangle of storage elements, each holding one bit. These bits are laid
out in rows and columns. A row read involves transferring an entire row of bits from the main storage area
into a local row buffer in the DRAM, from which the bits in the required column are selected. This row
read is relatively slow, because the transistors in the main storage area are small and therefore weak.
Once a row is in the local buffer, bits from different columns within it can be selected much more rapidly.
In the current system, reading or writing data from a new row takes five clock cycles, while reading or
writing data from the same row as the previous transfer takes two clock cycles. Each row in the current
implementation contains 2048 bytes, and these are usually referred to as pages.

The DRAM is used most efficiently when most transfers are in the same page as the previous transfer.
This suits video fetches, which are normally consecutive pixel reads; it suits blitter screen clears, shaded
polygons, and textured polygons from internal memory; and it suits the DMA controllers in each of the J-
RISC processors. It does not suit things like blitter copies which perform successive reads and writes
from locations that are not in the same DRAM page. The most efficient way to move a linear block of
memory is not to blit it, but to use one of the J-RISC processor DMA controllers to transfer it into local
RAM, then to transfer it out again to the new location.

The system will give you the most memory bandwidth, and therefore the best performance by one
measure, if DRAM transfers are mostly within the same row as the previous cycle, and are mostly sixty-
four bit.

Cartridge and Boot ROM

Compared to DRAM, ROM is slow and narrow. The boot ROM is only eight bits wide, and cartridges are
typically thirty-two bits. ROM is much slower then DRAM, especially compared to page mode transfers.
ROM is best used as a storage medium when you can, with its contents being transferred into DRAM
before use.

IO Space - on-chip registers and memory

All the registers and memory in the ASICs, as well as the joystick and other IO, are memory-mapped
within the 16 Mbyte address space. They are accessed over the internal IO bus. This is a separate
sixteen bit bus within the ASICs, and its speed is separately controllable and may have to be changed
dynamically depending on the peripheral.

Certain IO locations within Oberon may also be written to as thirty-two bit locations, this is discussed later.

J-RISC Processor Local Space

The J-RISC processors each have a local internal thirty-two bit bus. These busses run in parallel with the
main bus, and all transfers over them complete in one clock cycle. This means that the J-RISC

Page 6 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

processors can execute code and transfer data within their internal space without using the main bus at
all. This greatly increases their throughput. Transfers on these local busses may be:

• slave transfers for another processor
• DMA transfers from the local DMA controller
• operand data transfers
• program fetches

Because the local bus is thirty-two bits, IO bus transfers must always be performed in pairs in the order
low address then high address. The actual read occurs on the first of the pair, the actual write on the
second of the write pair; the data is just buffered in the other transfers.

All the J-RISC processor local memory is available to every processor in the system over the IO bus, and
when another processor accesses the local space of a J-RISC processor this is considered a slave
transfer cycle. Heavy use of slave transfers may have a small effect on performance, but overall this
impact is not very significant.

The address ranges that are subject to these restraints are:

 F02000 - F07FFF GPU
 F18000 - F19FFF RCPU
 F1A000 - F1DFFF DSP
 F1E000 - F1FFFF RCPU

Memory Map

The system memory map is normally configured as follows:

2 MB DRAM - RAM0 area

remainder of RAM0 area

RAM1 area

000000

200000

400000

Cartridge ROM area
32 bit

64 bit

800000

up to 6 MB

E00000

unused (extended Boot ROM)
8 bit

Video registers

Blitter & GPU registers

F00000

F02000

GPU local SRAM - 4K

Blitter texture SRAM - 8K

Blitter texture ROM - 8K

Puck and external IO

F03000

F04000

F06000

RCPU registers

DSP registers

DSP local SRAM - 8K

F10000

F18000

F1A000

F1B000

DSP local ROM - 2K
F1D000

RCPU local SRAM - 1K

RCPU cache SRAM - 4K

Boot ROM
8 bit

F1E000

F1F000

F20000

FFFFFF

Oberon memory space

Puck memory space

Areas marked in grey are not used in the current implementation.

Register Map

This is a complete list of every register in the Midsummer ASICs. All these registers are discussed in
greater detail further on in this document. They are all 16-bit registers unless otherwise marked.

F00000 MEMCON1 RW Memory Configuration Register One
F00002 MEMCON2 RW Memory Configuration Register Two
F00004 HC RW Horizontal Count
F00006 VC RW Vertical Count
F00008 LIMIT WO Object processor clip limit
F00008 LPH RO Horizontal Light-pen
F0000A LPV RO Vertical Light-pen
F00010 OB0-3 RO Object Code
F00020 OLP0-1 WO Object List Pointer
F00026 OBF WO Object Processor flag
F00028 VMODE WO Video Mode
F0002A BORD1 WO Border Colour (Red & Green)
F0002C BORD2 WO Border Colour (Blue)
F0002E HP WO Horizontal Period
F00030 HBB WO Horizontal Blanking Begin

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 7

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

F00032 HBE WO Horizontal Blanking End
F00034 HS WO Horizontal Sync
F00036 HVS WO Horizontal Vertical Sync
F00038 HDB1 WO Horizontal Display Begin 1
F0003A HDB2 WO Horizontal Display Begin 2
F0003C HDE WO Horizontal Display End
F0003E VP WO Vertical Period
F00040 VBB WO Vertical Blanking Begin
F00042 VBE WO Vertical Blanking End
F00044 VS WO Vertical Sync
F00046 VDB WO Vertical Display Begin
F00048 VDE WO Vertical Display End
F0004A VEB WO Vertical Equalization Begin
F0004C VEE WO Vertical Equalization End
F0004E VI WO Vertical Interrupt
F00050 PIT0 WO Programmable Interrupt Timer pre-scaler
F00052 PIT1 WO Programmable Interrupt Timer divide
F00054 HEQ WO Horizontal equalization end
F00056 TEST1 RW Diagnostic Test Register 1
F00058 BG WO Background Colour
F000E0 INT1 RW CPU Interrupt Control Register
F000E2 INT2 WO CPU Interrupt resume register
F00400 CLUT RW Color look-up table. 256 16-bit locations
F00800 LBUFA RW Line buffer A. 360 32-bit locations
F01000 LBUFB RW Line buffer B. 360 32-bit locations
F01800 LUBUFC RW Current line buffer (either A or B). 360 32-bit locations.
F02000 GPU_REGS RW GPU registers, sixty-four 32 bit locations
F02100 GPU_FLAGS RW GPU flags
F02104 GPU_MTXC WO GPU matrix control
F02108 GPU_MTXA WO GPU matrix address
F0210C GPU_BIGEND WO GPU big / little endian control
F02110 GPU_PC RW GPU program counter
F02114 GPU_CTRL RW GPU operation control / status
F02118 GPU_HIDATA RW GPU bus interface high data
F0211C GPU_REMAIN RO GPU division remainder
F0211C GPU_DIVCTRL WO GPU divide control register
F02120 GPU_DMACNT WO GPU DMA transfer count
F02124 GPU_DMACTL WO GPU DMA control register
F02124 GPU_DMASTAT RO GPU DMA status
F02128 GPU_DMAEA WO GPU DMA external address
F0212C GPU_DMAIA WO GPU DMA internal address
F02200 A1_BASE WO Blitter A1 base
F02204 A1_FLAGS WO Blitter A1 flags
F02208 A1_CLIP WO Blitter A1 window size
F0220C A1_PIXEL RW Blitter A1 pointer
F02210 A1_STEP WO Blitter A1 step
F02214 A1_FSTEP WO Blitter A1 step fraction
F02218 A1_FPIXEL RW Blitter A1 pointer fraction
F0221C A1_INC WO Blitter A1 pointer increment
F02220 A1_FINC WO Blitter A1 pointer increment fraction
F02224 A2_BASE WO Blitter A2 base
F02228 A2_FLAGS WO Blitter A2 flags
F0222C A2_MASK WO Blitter A2 mask
F02230 A2_PIXEL RW Blitter A2 pointer
F02234 A2_STEP WO Blitter A2 step
F02238 BLIT_CMD WO Blitter command
F0223C BLIT_COUNT WO Blitter loop counters
F02240 BLIT_SRCD WO Blitter source data
F02248 BLIT_DSTD WO Blitter destination data
F02250 BLIT_DSTZ WO Blitter destination Z data
F02258 BLIT_SRCZ1 WO Blitter source Z data 1

F02260 BLIT_SRCZ2 WO Blitter source Z data 2
F02268 BLIT_PATD WO Blitter pattern data
F02270 BLIT_IINC WO Blitter intensity increment
F02274 BLIT_ZINC WO Blitter Z increment
F02278 BLIT_STOP WO Blitter collision stop control
F0227C BLIT_I0 WO Blitter intensity register 0
F02280 BLIT_I1 WO Blitter intensity register 1
F02284 BLIT_I2 WO Blitter intensity register 2
F02288 BLIT_I3 WO Blitter intensity register 3
F0228C BLIT_Z0 WO Blitter Z register 0
F02290 BLIT_Z1 WO Blitter Z register 1
F02294 BLIT_Z2 WO Blitter Z register 2
F02298 BLIT_Z3 WO Blitter Z register 3
F0229C BLIT_FINNER WO Fractional part of the inner counter & extended command
F022A0 BLIT_IDELTA WO Inner counter initial value delta
F022A4 A1_XSD WO A1 X step delta value
F022A8 A1_YSD WO A1 Y step delta value
F022AC BLIT_ISTEP WO Intensity step value
F022B0 BLIT_ISD WO Intensity step value delta
F022B4 BLIT_ZSTEP WO Z step value
F022B8 BLIT_ZSD WO Z step value delta.
F022BC BLIT_X0 WO Texture X address pointer 0
F022C0 BLIT_X1 WO Texture X address pointer 1
F022C4 BLIT_X2 WO Texture X address pointer 2
F022C8 BLIT_X3 WO Texture X address pointer 3
F022CC BLIT_Y0 WO Texture Y address pointer 0
F022D0 BLIT_Y1 WO Texture Y address pointer 1
F022D4 BLIT_Y2 WO Texture Y address pointer 2
F022D8 BLIT_Y3 WO Texture Y address pointer 3
F022DC BLIT_XINC WO Texture X inner loop increment
F022E0 BLIT_XSTEP WO Texture X outer loop step
F022E4 BLIT_XSD WO Texture X outer loop step delta
F022E8 BLIT_YINC WO Texture Y inner loop increment
F022EC BLIT_YSTEP WO Texture Y outer loop step
F022F0 BLIT_YSD WO Texture Y outer loop step delta
F022F4 BLIT_TBASE WO Texture base address
F022F8 BLIT_IINCX WO Alternate intensity increment register
F022FC A1_MASK WO A1 window address mask.
F02300 A2_CLIP WO A2 clipping window size
F02304 A1_X WO Alternate view of A1 X pixel pointer and its fraction
F02308 A1_Y WO Alternate view of A1 Y pixel pointer and its fraction
F0230C A2_X WO Alternate view of A2 X pixel pointer
F02310 A2_Y WO Alternate view of A2 Y pixel pointer
F02314 A1_XSTEP WO Alternate view of A1 X step pixel pointer and its fraction
F02318 A1_YSTEP WO Alternate view of A1 Y step pixel pointer and its fraction
F0231C BLIT_COLOR WO Background color and data path control
F02320 BLIT_TXTD WO The texture data registers
F02400 BLIT_TCLUT WO Blitter texture CLUT - 16 words packed into 8 longs
F03000 GPU_RAM RW GPU local program and data RAM base, 1024 x 32 bits
F04000 TXT_RAM RW Blitter texture RAM, 2048 x 32 bits
F06000 TXT_ROM RW Blitter texture ROM, 2048 x 32 bits
F10000 JPIT1 WO Timer 1 Pre-scaler
F10002 JPIT2 WO Timer 1 Divider
F10004 JPIT3 WO Timer 2 Pre-scaler
F10006 JPIT4 WO Timer 2 Divider
F10010 CLK1 WO Processor clock divider
F10012 CLK2 WO Video clock divider
F10014 CLK3 WO Chroma clock divider
F10020 INT RW Interrupt Control Register
F10030 ASIDATA RW Asynchronous Serial Data
F10032 ASISTAT RO Asynchronous Serial Status

Page 8 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

F10032 ASICTRL WO Asynchronous Serial Control
F10034 ASICLK RW Asynchronous Serial Interface Clock
F10036 JPIT1 RO Timer 1 Pre-scaler
F10038 JPIT2 RO Timer 1 Divider
F1003A JPIT3 RO Timer 2 Pre-scaler
F1003C JPIT4 RO Timer 2 Divider
F10040 MEMCONP1 WO Puck Memory Configuration Register One
F10042 MEMCONP2 WO Puck Memory Configuration Register Two
F10080 CD_CTRL WO CD DMA Control Register
F10080 CD_STAT RO CD DMA Status
F10084 CD_FLOW WO CD and I2S data flow control
F10088 CD_ ACTN WO CD DMA Action contro;
F1008C CD_PATH RW High word of pattern-recogniser long
F1008E CD_PATL RW Low word of pattern-recogniser long
F10090 CD_STARTH RW High word of CD DMA controller start address
F10092 CD_STARTL RW Low word of CD DMA controller start address
F10094 CD_ENDH RW High word of CD DMA controller end address
F10096 CD_ENDL RW Low wordof CD DMA controller end address
F10098 CD_MASK RW Mask applied to the DMA address
F1009C CD_CURH RO High word of CD DMA controller current transfer address
F1009E CD_CURL RO Low word of CD DMA controller current transfer address
F1009C CD_FAKEH WO High word of ‘fake’ input long
F1009E CD_FAKEL WO Low word of ‘fake’ input long
F14000 JOY1 RW Joystick register
F14002 JOY2 RW Button register
F14800 GPIO0 RW General purpose IO decodes
F15000 GPIO1 RW
F16000 GPIO2 RW
F17000 GPIO3 RW
F17800 GPIO4 RW
F17C00 GPIO5 RW
F18000 RCPU_REGS RW RCPU registers, sixty-four 32 bit locations
F18100 RCPU_FLAGS RW RCPU flags
F18104 RCPU_MTXC WO RCPU matrix control
F18108 RCPU_MTXA WO RCPU matrix address
F1810C RCPU_BIGEND WO RCPU big / little endian control
F18110 RCPU_PC RW RCPU program counter
F18114 RCPU_CTRL RW RCPU operation control / status
F18118 RCPU_HIDATA RW RCPU bus interface high data
F1811C RCPU_REMAIN RO RCPU division remainder
F1811C RCPU_DIVCTRL WO RCPU divide control register
F18120 RCPU_DMACT WO RCPU DMA transfer count
F18124 RCPU_DMACTL WO RCPU DMA control register
F18128 RCPU_DMAEA WO RCPU DMA external address
F1812C RCPU_DMAIA WO RCPU DMA internal address
F18130 RCPU_CACTRL RW RCPU cache control register
F18134 RCPU_CAILO WO RCPU cache ignore range lower limit
F18138 RCPU_CAIHI WO RCPU cache ignore range upper limit
F1813C RCPU_UART_C RW RCPU UART control register
F18140 RCPU_UART_D RW RCPU UART data register
F18144 RCPU_SBASE RW RCPU base pointer for rolling stack cache
F1A000 DSP_REGS RW DSP registers, sixty-four 32 bit locations
F1A100 DSP_FLAGS RW DSP flags
F1A104 DSP_MTXC WO DSP matrix control
F1A108 DSP_MTXA WO DSP matrix address
F1A10C DSP_BIGEND WO DSP big / little endian control
F1A110 DSP_PC RW DSP program counter
F1A114 DSP_CTRL RW DSP operation control / status
F1A118 DSP_MMASK RW DSP modulo instruction mask
F1A11C DSP_REMAIN RO DSP division remainder
F1A11C DSP_DIVCTRL WO DSP divide control register

F1A120 DSP_ACCUM RO DSP MAC operation result high bits
F1A120 DSP_DMACNT WO DSP DMA transfer count
F1A124 DSP_DMACTL WO DSP DMA control register
F1A124 DSP_DMASTAT RO DSP DMA status
F1A128 DSP_DMAEA WO DSP DMA external address
F1A12C DSP_DMAIA WO DSP DMA internal address
F1A130 PCM_LISTP WO DSP PCM list pointer
F1A134 PCM_CTRL RW DSP PCM control/status
F1A148 LTXD WO Left transmit data
F1A14C RTXD WO Right transmit data
F1A148 LRXD RO Left receive data
F1A14C RRXD RO Right receive data
F1A150 SCLK WO Serial Clock Frequency
F1A150 SSTAT RO Serial status
F1A154 SMODE WO Serial Mode
F1B000 DSP_RAM RW DSP data RAM, 8K bytes, byte addressable
F1E000 RCPU_DRAM RW RCPU data RAM, 1K bytes, byte addressable
F1E800 RCPU_TRAM RW RCPU cache tag RAM, 256 bytes, long addressable
F1F000 RCPU_PRAM RW RCPU cache data RAM, 4K bytes, long addressable

Video Generator and Object Processor

Overview

The video section has been designed to drive a PAL/NTSC TV. The display normally has a horizontal
resolution from 200 up to 720 pixels, and a vertical resolution of about 220-280 lines non-interlaced or
440-560 lines interlaced. However by adopting a flexible approach to the design, the chip can be used
with a range of display standards outside these values through VGA to Workstation.

Three colour resolutions are supported, 24 bit RGB, 16 bit RGB, and our own standard 16 bit CRY (Cyan,
Red, Intensity). The 24 bit mode is useful for applications requiring true colour. The 16 bit modes are
designed for animation. They consume less memory, and fit better into 64 bit phrases. The CRY mode is
simple to shade and both 16 bit modes are more or less indistinguishable from 24 bit mode. The pixels
are packed thus (in a big-endian system):

R3 R2 R1 R0 C3 C2 C1 C0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

16-Bit CRY Pixel Organisation

G7 G6 G5 G4 G3 G2 G1 G0 R7 R6 R5 R4 R3 R2 R1 R0

24-Bit RGB Pixel Organisation

B7 B6 B5 B4 B3 B2 B1 B0

low word

high word

R4 R3 R2 R1 R0 B4 B3 B2 B1 B0 G5 G4 G3 G2 G1 G0

16-Bit RGB Pixel Organisation

15 0

31 16

15 0

15 0

The video generator decouples the pixel frequency from the system clock by using a line buffer. This
means that the system clock does not have to be related to the colour carrier frequency and is unaffected
by gen-locking. There are actually two line buffers; one is displayed, while the other is prepared by the
Object Processor. Each line buffer is a 360 x 32 bit RAM which is cycled at the system clock rate. The line
buffer contains physical pixels, which have been expanded by the CLUT where necessary these may
be either 16 bit RGB, 16 bit CRY pixels or 24 bit RGB pixels. The line buffers may be swapped over at the
start and in the middle of display lines.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 9

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

The 16 bit CRY pixels at the output of the line buffer are converted to 24 bit RGB pixels using a
combination of look-up tables and small multipliers.

The video timing is completely programmable in units of the pixel clock. The pixel clock can be up to the
system clock rate, although there is provision for higher rates with an external multiplexer. For TV
applications the pixel clock will be in the range 12 to 15 MHz. The pixel clock will be synthesised from the
chroma carrier or from an external video source using a device like the MC1378. Eight bits per pixel at up
to four times the video clock rate can be supported by using an external multiplexer, colour-look-up and
DAC.

The video generator uses an Object Processor, this combines the advantages of frame store and sprite
based architectures. Oberon's Object Processor is simple yet sophisticated. It has scaled and unscaled
bit-map objects, branch objects for controlling its control flow, and interrupt objects. It can interrupt the
graphics processor to perform more complex operations on its behalf. The graphics processor supports
rotation, branches, palette loads, etc.

The Object Processor can write into the line buffer at up to two pixels per clock cycle. The source data
can be 1,2,4,8,16 or 24 bits per pixel. Except for 24 bits, objects of different colour resolutions can be
mixed. The low resolution objects, one to eight bits, use a palette to obtain a 16 bit physical colour.

A sophistication in the Object Processor is that it can modify the existing contents of the line buffer with
another image. This could be used to produce shadows, mist or smoke, coloured glass or say the effect
of a room illuminated by flash lamp.

The Object Processor can also ignore data that is stored alongside pixel data. If, for instance, a Z buffer is
needed then this can be situated next to the pixels. This helps because DRAM RAS pre-charges are
needed less frequently.

Object Processor Performance

Each object is described by an object header which is two phrases for an unscaled object and three
phrases for a scaled object. When an image has been processed the modified header is written back to
memory.

The Object Processor fetches one phrase (64 bits) of video data at a time. This phrase is expanded into
pixels (and written into the line buffer) while the next phrase is fetched.

Image data consists of a whole number of phrases. The image data may need to be padded with
transparent pixels (colour zero in 1, 2, 4, 8 & 16 bit modes).

The Object Processor writes into the line buffer at one write per system clock cycle. In 24 bits-per-pixel
mode and for scaled objects one pixel is written per cycle. For unscaled objects with 16 or fewer bits per
pixel two pixels are written per cycle. Most objects will therefore be expanded at twice the system clock
rate.

If the read-modify-write flag is set in the object header the object data is added to the previous contents of
the line buffer. In this case the data rate into the line buffer is halved.

This peak rate may be reduced if the memory bandwidth is not high enough. However if 64 bit wide
DRAM is installed then these data rates will be sustained for all modes.

When accessing successive locations in 64 bit wide DRAM, the memory cycle time is two clock cycles.
These are page mode cycles. When the DRAM row address must change there is an overhead of
between three and seven clock cycles (depending on DRAM speed). These RAS cycles will occur
infrequently during object data fetches but will typically occur during the first data read after reading the
object header (because the header and image data will not normally be near each other in memory). RAS
cycles will also occur after refresh cycles or if a bus master with a higher priority steals some memory
cycles in an area of memory with a different row address. Refresh cycles will normally be postponed until
object processing has completed.

Memory controller

Oberon's memory controller is very fast and flexible. It hides the memory width, speed and type from the
other parts of the system.

Memory is grouped into banks that may be of different widths, speeds and types (although both ROM
banks have the same width and speed). Each bank is enabled by a chip select. In the case of DRAM
there are two chip selects RAS & CAS. Memory widths can be 8,16,32 or 64 bits wide but the memory
controller makes it all look 64 bits wide.

There are eight write strobes - one for each group of eight bits. There are three output enables
corresponding to d[0-15],d[16-31] and d[32-63]. Three memory types are supported: DRAM, SRAM and
ROM.

ROM or EPROM is used for bootstrap and for cartridges. The ROM speed is programmable. The memory
controller allows the system to view ROM as 64 bits wide. Pull-up and pull-down resistors determine the
ROM width during reset.

DRAM is the principal memory type, as it is cheap and fast when used in fast page mode. In fast page
mode the DRAM cycles at two clock cycles per transfer. The row time access is programmable. The
column access time is not programmable and can only be adjusted by changing the system clock (a page
mode cycle takes two clock cycles). The memory controller decides on a cycle by cycle basis whether the
next cycle can be a fast page mode cycle. Data and algorithms should be organised to minimise the
number of page changes.

There are four memory banks; two of ROM and two of DRAM.

Microprocessor Interface

JAGUAR has been designed to work with any 16 or 32 bit microprocessor with (up to) 24 address lines.
The interface is based on the 68000 but most microprocessors can be attached by using a PAL to
synthesize those control signals that differ. All peripherals are memory mapped; there is no separate IO
space.

The width of the microprocessor is determined during reset by a pull-up / pull-down resistor. Variation in
the address of the cold boot code or start-up vector is accommodated by making the bootstrap ROM
appear everywhere until the memory configuration is set up by the microprocessor.

The microprocessor interface is generally asynchronous so the clock speeds of the microprocessor and
co-processors may be independent. Puck uses the same microprocessor interface.

The CPU normally has the lowest bus priority but under interrupts its priority is increased.

The following list gives the priorities of all bus masters.

Highest priority

1. Refresh
2. DSP at DMA priority
3. CD DMA transfers
4. RCPU at DMA priority
5. GPU at DMA priority
6. Blitter at high priority
7. Object Processor
8. DSP at normal priority
9. RCPU at high priority
10. CPU under interrupt
11. GPU at normal priority
12. Blitter at normal priority
13. RCPU at normal priority
14. CPU

Lowest priority

Memory Map

Jaguar's memory map depends on how it is being used.

Following reset the following 2 Mbyte window, corresponding to the ROM0 area, is repeated throughout
the 16 Mbyte address space until memory is configured by the microprocessor by writing to MEMCON1.
After configuration, this map corresponds to the area defined as ROM0 on the maps below.

Page 10 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

1FFFFF
Boot st r ap ROM

Joyst i cks and
GPI O0- 5

Puck r egi st er s

I nt er nal
Regi st er s

Boot st r ap ROM

000000

100000

110000

114000

120000

DSP and RCPU
118000

When the memory configuration is set one of two memory maps is selected depending on bit ROMHI of
the memory configuration register.

FFFFFF

Boot st r ap ROM

ROM1
Car t r i dge ROM

DRAM1
Dynami c RAM

DRAM0

000000

400000

800000

E00000

Dynami c RAM

ROM0
FFFFFF

Boot st r ap ROM

ROM1
Car t r i dge ROM

DRAM1
Dynami c RAM

DRAM0

000000

200000

800000

C00000

Dynami c RAM

ROM0

ROMHI =1 ROMHI =0

and r egi st er s

and r egi st er s

2 Mbyt es

6 Mbyt es

4 Mbyt es

4 Mbyt es

4 Mbyt es

4 Mbyt es

6 Mbyt es

2 Mbyt es

ROM0 is the bootstrap ROM but internal (on chip) memory and peripherals occupy 128 KBytes of this
space, as shown above. ROM1 is the cartridge ROM. DRAM0 and DRAM1 are the two banks of DRAM.

A 68000 system will naturally operate with RAM at 0, so the ROMHI map is assumed throughout this
document. If the system is operated with ROMHI = 0 then the first digit of all internal addresses should be
1 rather than F. This is not recommended.

Internal Memory Map

Internal Memory is mostly 16 bits wide to allow operation with 16 bit microprocessors.

32 bit write cycles are allowed to some areas of internal memory notably the line buffer and the graphics
processor memory. The line buffers support 32 bit writes primarily in order to accelerate Blitter writes to
the line buffer. The graphics processor supports 32 bit writes to accelerate program and data loads.

MEMCON1 Memory Configuration Register One F00000 RW

Bit 0 ROMHI When set the two ROM decodes address the top 8M within the
16M window. When clear the ROM decodes address the bottom
8M. This document assumes throughout that ROMHI is set when
discussing register addresses.

Bits 1,2 ROMWIDTH Specifies the width of ROM:
0 8 bits
1 16 bits
2 32 bits
3 64 bits

Bits 3,4 ROMSPEED Specifies the ROM cycle time:
0 10 clock cycles
1 8 clock cycles
2 6 clock cycles
3 5 clock cycles

Bits 5,6 DRAMSPEED Specifies the DRAM Speed. The page mode cycle time is always
two clock cycles. These bits determine RAS related timing as
follows (the times are clock cycles):

 Bits 5,6
0
1
2
3

Precharge
4
4
3
2

RAS to CAS
3
3
2
1

Refresh
5
4
4
3

Bit 7 FASTROM Sets the ROM cycle time to two clock cycles. This is for test
purposes only.

Bits 8-10 unused Set to zero.
Bits 11,12 IOSPEED Specifies the speed of external peripherals. The number of cycles

here is the overall cycle time, the control strobes are active for two
cycles less than this.
0 18 clock cycles
1 10 clock cycles
2 4 clock cycles
3 6 clock cycles

Bit 13 unused Set to zero.
Bit 14 CPU32 Indicates that the microprocessor is 32 bits.
Bit 15 unused Set to zero.

All the ROMSPEED bits are set to zero on reset. ROMHI, ROMWIDTH and CPU32 are determined by
external pull-up / pull-down resistors. All the other bits are undefined. ROM0 repeats every 2 Mbytes until
this register is written to.

MEMCON2 Memory Configuration Register Two F00002 RW

Bits 0,1 COLS0 Specifies number of columns in DRAM0
0 256
1 512
2 1024
3 2048

Bits 2,3 DWIDTH0 Specifies the width of DRAM0
0 8 bits
1 16 bits
2 32 bits
3 64 bits

Bits 4,5 COLS1 Specifies number of columns in DRAM1
0 256
1 512
2 1024
3 2048

Bits 6,7 DWIDTH1 Specifies the width of DRAM1
0 8 bits
1 16 bits
2 32 bits
3 64 bits

Bits 8-11 REFRATE Specifies the refresh rate. DRAM rows are refreshed at a
frequency of CLK / (64 x (REFRATE+1)). Many DRAM chips
require a refresh frequency of 64 KHz. Refresh cycles occur at the
end of object processing. If REFRATE is zero refresh is disabled.

Bit 12 BIGEND Specifies that big-endian addressing should be used. This
determines the address of a byte within a phrase and allows
Jaguar to be used comfortably with Big-endian (Motorola)
processors or with Little-endian (Intel) processors.

Bit 13 HILO Specifies that image data should be displayed from high order bits
to low order.

All the above bits are undefined on reset except BIGEND which is determined by external pull-up / pull-
down resistors.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 11

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

HC Horizontal Count F00004 RW

This register comprises of a ten bit counter that counts from zero up to the value in the horizontal period
register twice per video line. An eleventh bit determines which half of the display is being generated. The
counter is incremented by the pixel clock. The vertical counter is incremented every half line in order to
support interlaced displays. This register is only for chip test purposes.

VC Vertical Count F00006 RW

This register comprises of an eleven bit counter that counts from zero up to the value in the vertical period
register once per field. A twelfth bit determines which field (odd or even) is being generated. The counter
is incremented every half line. This register can be read to do beam synchronous operations. It is only
written to for chip test purposes.

LIMIT Object processor clip limit F00008 WO

This register defines the line buffer pixel position at which line buffer writes are clipped, and the object
processor will move on to the next object. The line buffer holds 720 16 bit pixels. When an object is
copied into the line buffer for display any data which would extend beyond this limit is discarded and the
object processor moves onto the next object. Many games display far fewer than 720 pixels horizontally
so this "clipping" process will commence much sooner and improve efficiency if this register is set up
appropriately.

This register is set to 720 after reset.

LPH Horizontal Light-pen F00008 RO

This read only eleven bit register gives the horizontal position in pixels of the light-pen.

LPV Vertical Light-pen F0000A RO

The low eleven bits of this register gives the vertical position of the light-pen in half lines.

OB[0-3] Object Code F00010-16 RO

These four registers allow the graphics processor to read the current object. This allows the graphics
processor object to pass parameters to the GPU interrupt service routine.

OLP1(OLP) Object List Pointer Low Word F00020 WO
OLP2 Object List Pointer High Word F00022 WO

This pair of 16 bit registers point to the start of the object list. All objects must be on a phrase boundary so
the bottom three bits are always zero. When one object links to another, bits 3 to 21 of this address are
replaced by the LINK data in the object.

You can write to this register pair with a single long transfer, but note that the word ordering is little-
endian, so you will have to swap the words of the data before doing the long write.

OBF Object Processor flag F00026 WO

Bit zero of this register can be tested by the Object Processor branch instruction. If set the branch is
taken, if clear execution continues with the next object. This flag is intended as a mechanism for letting
the graphics processor control the Object Processor program flow. A write (of anything) to this register
restarts the Object Processor after a Graphics Processor interrupt object.

VMODE Video Mode F00028 WO

Bit Name Description
0 VIDEN When set enables time-base generator

1-2 MODE Determines how the line buffer contents are translated into physical
pixels.
0 16 bit CRY. Each 32 bit entry in the line buffer is treated as two

16 bit CRY pixels on successive clock cycles. Each is
converted into eight bits of red, green & blue using a
combination of lookup tables and multipliers.

1 24 bit RGB. Each 32 bit entry in the line buffer is treated as one
physical pixel with eight bits of red, eight bits of blue, eight bits
of green and eight bits unused.

2 16 bit direct. Each 32 bit entry in the line buffer is divided into
two 16 bit words which are output directly onto the red and
green outputs on alternate phases of the video clock. This
mode is for applications requiring a dot clock in excess of 40
MHz. It is assumed that further multiplexing and colour lookup
will occur outside the chip. In this mode blanking and video
active are output on the two least significant bits of blue.

3 16 bit RGB. Each 32 bit entry in the line buffer is treated as two
16 bit RGB pixels. Bits [0-5] are green, bits [6-10] are blue and
bits [11-15] are red.

3 GENLOCK When set this bit enables digital genlocking. This means that
external syncs will reset the internal time-base generators. On its
own this mechanism does not give satisfactory genlocking because
there is a jitter of up to one pixel. However this mechanism is used
to quickly lock onto a new video source. An external Phase Locked
Loop is required for true genlocking.

4 INCEN Enables encrustation. When set the least significant bit of the CRY
intensity is used to switch between local and external video sources
using an external video multiplexer. This allows the video source to
be switched on a pixel by pixel basis.

5 BINC Selects the local border colour if encrustation is enabled.
6 CSYNC Enables composite sync on the vertical sync output.
7 BGEN Clears the line buffer to the colour in the background register after

displaying the contents. This only has effect in CRY and RGB16
modes.

8 VARMOD Enables variable colour resolution mode. When this bit is set the
least significant bit of each word in the line buffer is used to
determine the colour coding scheme of the other 15 bits. If the bit is
clear the bits the word is treated as a CRY pixel. If the bit is set then
bits [1-5] are green, bits [6-10] are blue and bits [11-15] are red. This
mechanism allows JAGUAR to support an RGB window against a
CRY background for instance.

9-11 PWIDTH This field determines the width of pixels in video clock cycles. The
width is one more than the value in this field.
The video time base generator is programmed in cycles of the video
clock and not the pixel clock produced by this divider.
The display width should be set to be an integer number of pixels,
i.e. an integer multiple of the pixel width programmed here.

12 DBL_SCAN In order to overlay a TV/games quality image over a VGA display. It
is desirable to display the line buffer twice. This makes each pixel
twice as high without the overhead of scaling and it gives the object
processor two lines in which to prepare the next line.
This mode is enabled by setting the DBL_SCAN bit. It should be
noted that the object processor is invoked every other line. This
means that the YPOS field in bit mapped objects must be
incremented by two to move an object down by one pixel. Also
because the object processor skips alternate lines branch objects
should be an even number of lines from the start line.

13-15 unused Write zero.

BORD1 Border Colour (Red & Green) F0002A WO
BORD2 Border Colour (Blue) F0002C WO

These registers determine the physical border colour. There are eight bits per primary colour. Red is the
less significant byte of BORD1. This colour is displayed between the active portions of the screen and

Page 12 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

blanking. It is not necessary to display a border. The border area is defined by the video time-base
registers.

HP Horizontal Period F0002E WO

This ten bit register determines the period of half a display line in video clock cycles. The period is one
clock cycle longer than the value written into this register.

HBB Horizontal Blanking Begin F00030 WO

This eleven bit register determines the start position of horizontal blanking. The most significant bit is
usually set because blanking starts in the second half of the line.

HBE Horizontal Blanking End F00032 WO

This eleven bit register determines the end position of horizontal blanking. The most significant bit is
usually clear because blanking ends in the first half of the line.

HS Horizontal Sync F00034 WO

This eleven bit register determines the width of the horizontal sync and equalization pulses. The pulses
start when the horizontal count equals the value in the register. The pulses end when the horizontal count
equals the horizontal period. The most significant bit is usually set because horizontal sync happens at
the end of the line. The most significant bit is ignored in the generation of equalization pulses which are
the same width as horizontal sync but which appear twice per line (for 10 half lines during field blanking).

HVS Horizontal Vertical Sync F00036 WO

This ten bit register determines the end position of the vertical sync pulses. Vertical Sync consists of long
sync pulses for several half lines. These pulses are generated twice per line. Vertical sync starts at the
same time as the horizontal sync or equalization pulses but end when the least significant ten bits of the
horizontal count match the HVS register.

HDB1 Horizontal Display Begin 1 F00038 WO
HDB2 Horizontal Display Begin 2 F0003A WO

These eleven bit registers control where on the display line the Object Processor starts. When the
horizontal count matches either of the above registers the Object Processor starts execution at the
address in OLP, the line buffers swap over and pixels are shifted out of the line buffer. The Object
Processor can run twice per line in order to support display modes where the amount of data on a display
line is greater than can be contained in one line buffer. The line buffers are each 360 words x 32 bits. If
the display mode was 720 x 24 bits per pixel then line buffer A might be displayed at the start of the line
while buffer B was being written. Then during the second half of the display line buffer B would be
displayed while line buffer A was prepared for the next line. In this case HDB1 would contain a value
corresponding to the left hand edge of the display and HDB2 would contain a value corresponding to the
middle of the display. If the Object Processor needs to run only once per line then either the registers take
the same value or one register is given a value greater than the line length.

HDE Horizontal Display End F0003C WO

This eleven bit register specifies when the display ends. Either border colour or black (if HBB < HDE) is
displayed after the horizontal count matches this register.

The relative positions of some of the above signals and the registers which define them are shown on the
following diagram.

hp hs hphs

hs heq heq heqhs hs

hs hshshvs hvs

hbe hbb

hdb1/ hdb2 hde

/ hsync

/ eq

/ vsync

hbl ank

vact i ve

di spl ay l i ne

VP Vertical Period F0003E WO

This eleven bit register determines the number of half lines per field. The number is one more than the
value written into this register. If the number of half lines is odd then the display is interlaced.

VBB Vertical Blanking Begin F00040 WO

This eleven bit register specifies the half line on which vertical blanking begins.

VBE Vertical Blanking End F00042 WO

This eleven bit register specifies the half line on which vertical blanking ends.

VS Vertical Sync F00044 WO

This eleven bit register specifies the half line on which vertical sync begins. Vertical sync pulses are
generated from this line to the line specified by the vertical period.

VDB Vertical Display Begin F00046 WO

This eleven bit register specifies the half line on which object processing begins. Object processing
restarts on every line until the half line specified by the VDE register. The border colour (or black) is
displayed outside these active lines.

VDE Vertical Display End F00048 WO

This eleven bit register specifies the half line at which object processing ends.

VEB Vertical Equalization Begin F0004A WO

This eleven bit register specifies the half line on which equalization pulses start.

VEE Vertical Equalization End F0004C WO

This eleven bit register specifies the half line on which equalization pulses end.

VI Vertical Interrupt F0004E WO

This eleven bit register specifies a half line on which the VI interrupt is generated. This number must be
odd for non-interlaced set-ups.

PIT[0-1] Programmable Interrupt Timer F00050-52 WO

These two 16 bit registers control the frequency of interrupts to the CPU and to the GPU. PIT[0] & PIT[1]
operate as a pair controlling the interrupts.

The system clock is divided by (one plus the value in the first register). If the first register contains zero
the timer is disabled. The resulting frequency is divided by (one plus the value in the second register) and
the output of this divider generates the interrupt.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 13

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

HEQ Horizontal equalization end F00054 WO

This ten bit register determines the end position of the equalization pulses. Equalization consists of short
sync pulses for several half lines on either side of vertical sync. These pulses are generated twice per
line.

TEST1 Diagnostic Test Register 1 F00056 RW

This register is for chip test purposes only and must never be written to in normal operation. The boot-
strap code may alter it to initialise the system for an application.

Bit Description
0 enables the vertical and horizontal counters
1 starts object processing
2 disables the CRY ROMs for testing the multipliers
3 latches the vertical count
4 enables the NAND tree output onto XINTL
5 enable the Jaguar One Jerry interface
6 delay the DRAM write strobes by one half clock cycle
7 sets the timer and prescaler to run off VCLK instead of PCLK
8 enables interrupt vectors based on 40h + bits 0-4 of INT1
9 enables the current bus owner onto the bottom 4 bits of blue, for

debug only, as follows:
0. CPU
1. low priority Puck
2. blitter
3. GPU
4. CPU under interrupt
5. normal priority Puck
6. object processor
7. high priority blitter
8. high priority GPU
9. high priority Puck
10. refresh
Note that this is the Oberon view, further arbitration is done in Puck.

BG Background Colour F00058 WO

This register specifies the CRY colour to which the line buffer is cleared.

INT1 68000 Interrupt Control Register F000E0 RW

This register enables, identifies and acknowledges interrupts from the five different 68000 interrupt
sources. The interrupts sources are as follows:

0 Video This interrupt is generated by the video time-base, on a line selected

by the VI register.
1 GPU This interrupt is generated by the graphics processor writing to an

internal register.
2 Object This interrupt is generated by stop objects.
3 Timer This interrupt is generated by the programmable timer (PIT) in

OBERON.
4 Puck This interrupt is generated by an input to Oberon and is intended for

use by Puck. This is an active high edge-triggered interrupt - the first
interrupt will occur on the first rising edge after it has been enabled.

Bits 0 to 4 enable the individual interrupt sources, i.e. if bit 1 is set the graphics processor interrupt is
enabled. When read bits 0 to 4 indicate which interrupts are pending, i.e. if bit 3 is set there is an timer
interrupt pending. Bits 8 to 12 clear pending interrupts from the corresponding interrupt source.

Note that INT2 must always be written to at the end of a CPU interrupt service routine.

INT2 CPU Interrupt Resume Register F000E2 WO

When an interrupt is applied to the CPU the bus priorities of the graphics processor and Blitter are
reduced so that the CPU can service real time interrupts promptly. The bus priorities are restored by
writing any value to this register. This should therefore always be done at the end of an interrupt service

routine. After the write to this port the Blitter or GPU may then restart, and no further instructions will then
be executed until either the next interrupt occurs, or the GPU or Blitter operation completes.

CLUT Colour Look-Up Table F00400-7FE RW

The colour look-up table translates an eight bit colour index into a 16 bit physical colour (CRY or 16 bit
RGB). The eight bit index comes from the object data, which may be 1,2,4 or 8 bits. In order to achieve a
high throughput there are two tables allowing two pixels at a time to be written into the line buffer. There
are 256 16 bit entries in each table. Locations in the range F00400-5FE read from table A. Addresses in
the range F00600-7FE read from table B. Writing to either address range writes to both tables.

LBUF Line Buffer F00800-0D9E RW
 F01000-159E
 F01800-1D9E

There are two line buffers each of which consists of a 360 x 32 bit RAM. Each 32 bit long-word can be
read/written as two 16 bit words. In 16 bit CRY mode each word is a CRY pixel; the less significant byte is
the intensity. The word with the lowest address corresponds to the left-most pixel. In 24 bit RGB mode
each 32 bit long-word is a pixel. The less significant byte of the word at the lower address is the red value.
The more significant byte is the green value and the less significant byte of the word at the high address
is the blue value. The fourth byte is unused.

The first address range addresses line buffer A. The second addresses line buffer B. The third addresses
the line buffer currently selected for writing. The first two address ranges are for test purposes the third is
for the graphics processor to assist the Object Processor in preparing the line buffer.

By adding 8000h to the above address ranges 32 bit writes can be made to the line buffer. This is mainly
to accelerate the Blitter.

Object definitions

There are six basic object types

Bit Mapped Object

This object displays an unscaled bit mapped object. The object must be on a 16 byte boundary in 64 bit
RAM.

First Phrase

Bits Field Description
0-2 TYPE Bit mapped object is type zero
3-13 YPOS This field gives the value in the vertical counter (in half lines) for

the first (top) line of the object. The vertical counter is latched
when the Object Processor starts so it has the same value
across the whole line. If the display is interlaced the number is
even for even lines and odd for odd lines. If the display is non-
interlaced the number is always even. The object will be active
while the vertical counter >= YPOS and HEIGHT > 0.

14-23 HEIGHT This field gives the number of data lines in the object. As each
line is displayed the height is reduced by one for non-interlaced
displays or by two for interlaced displays. (The height becomes
zero if this would result in a negative value.) The new value is
written back to the object.

24-42 LINK This defines the address of the next object. These nineteen bits
replace bits 3 to 21 in the register OLP. This allows an object to
link to another object within the same 4 Mbytes.

43-63 DATA This defines where the pixel data can be found. Like LINK this is
a phrase address. These twenty-one bits define bits 3 to 23 of the
data address. This allows object data to be positioned anywhere
in memory. After a line is displayed the new data address is
written back to the object.

Second Phrase

Bits Field Description

Page 14 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

0-11 XPOS This defines the X position of the first pixel to be plotted. This 12
bit field defines start positions in the range -2048 to +2047.
Address 0 refers to the left-most pixel in the line buffer.

12-14 DEPTH This defines the number of bits per pixel as follows:
 0 1 bit/pixel
 1 2 bits/pixel
 2 4 bits/pixel
 3 8 bits/pixel
 4 16 bits/pixel
 5 24 bits/pixel
15-17 PITCH This value defines how much data, embedded in the image data,

must be skipped. For instance two screens and their common Z
buffer could be arranged in memory in successive phrases (in
order that access to the Z buffer does not cause a page fault).
The value 8 * PITCH is added to the data address when a new
phrase must be fetched. A pitch value of one is used when the
pixel data is contiguous - a value of zero will cause the same
phrase to be repeated.

18-27 DWIDTH This is the data width in phrases. i.e. Data for the next line of
pixels can be found at 8 * (DATA + DWIDTH)

28-37 IWIDTH This is the image width in phrases (must be non zero), and may
be used for clipping.

38-44 INDEX For images with 1 to 4 bits/pixel the top 7 to 4 bits of the index
provide the most significant bits of the palette address.

45 REFLECT Flag to draw object from right to left.
46 RMW Flag to add object to data in line buffer. The values are then

signed offsets for intensity and the two colour vectors.
47 TRANS Flag to make logical colour zero and reserved physical colours

transparent.
48 RELEASE This bit forces the Object Processor to release the bus between

data fetches. This should typically be set for low colour resolution
objects because there is time for another bus master to use the
bus between data fetches. For high colour resolution objects the
bus should be held by the Object Processor because there is
very little time between data fetches and other bus masters would
probably cause DRAM page faults thereby slowing the system.
External bus masters, the refresh mechanism and graphics
processor DMA mechanism all have higher bus priorities and are
unaffected by this bit.

49-54 FIRSTPIX This field identifies the first pixel to be displayed. This can be
used to clip an image. The significance of the bits depends on
the colour resolution of the object and whether the object is
scaled. The least significant bit is only significant for scaled
objects where the pixels are written into the line buffer one at a
time. The remaining bits define the first pair of pixels to be
displayed. In 1 bit per pixel mode all five bits are significant, In 2
bits per pixel mode only the top four bits are significant. Writing
zeroes to this field displays the whole phrase.

55 FORCE_LSB The mixed CRY-RGB display mode was principally created to
mix real-time RGB data from a camera say, with computer
generated CRY images without the need for colour space
conversion. However the blitter shading logic does not have logic
to protect the least significant bit of each pixel.
When this bit is set, the object processor will set or clear the LSB
of every pixel within an object. If bit 55 of the first phrase of a bit
mapped object is set then the LSB of each pixel is taken from bit
38 of this phrase (the least significant bit of the index). In mixed
mode the LSB should be set to display the pixel as RGB or clear
to display the pixel as CRY.

56 MIXER This bit enables the object data mixer. See the discussion below
under the Mixer Object.

57 HI_SCALE Enables high precision scaling. The third phrase of the scaled bit
map object uses the second higher precision form when this bit is
set, as shown below.

58 DBL_RMW When this bit is set, the strength of RMW objects is doubled. This
allows a single RMW object to fade all the way to black.

59-63 unused Write zero

Scaled Bit Mapped Object

This object displays a scaled bit mapped object. The object must be on a 32 byte boundary in 64 bit RAM.
The first 128 bits are identical to the bit mapped object except that TYPE is one. An extra phrase is
appended to the object. If the HI_SCALE bit is set in the second phrase of the object description, then the
object scales take a secondary form shown below. This mode also allows the horizontal remainder to be
initialised.

Bits Field Description
0-7 HSCALE This eight bit field contains a three bit integer part and a five bit

fractional part. The number determines how many pixels are
written into the line buffer for each source pixel.

8-15 VSCALE This eight bit field contains a three bit integer part and a five bit
fractional part. The number determines how many display lines
are drawn for each source line. This value equals HSCALE for an
object to maintain its aspect ratio.

16-23 REMAINDER This eight bit field contains a three bit integer part and a five bit
fractional part. The number determines how many display lines
are left to be drawn from the current source line. After each
display line is drawn this value is decremented by one. If it
becomes negative then VSCALE is added to the remainder until
it becomes positive. HEIGHT is decremented every time
VSCALE is added to the remainder. The new REMAINDER is
written back to the object.

24-63 Unused write zeroes.

This is the alternative form of the third phrase used when the HI_SCALE bit is set. This higher precision,
form of the third phrase is used to define the scaling factors. The format above uses an eight bit number
to define the scale. This eight bit number comprises a three bit integer and a five bit fraction. This allows
scaling between 1/32 and 7. This high precision format uses a 16 bit number comprised of an eight bit
integer and an eight bit fraction. This allows scaling between 1/256 and 256 but more importantly it allows
more precise definition of scale.

This form of the third phrase also carries a horizontal remainder. This determines the width of the first
pixel to be displayed. This can be used to get more control over scaling e.g. to ensure symmetry in scaled
objects.

The bits in the third phrase of higher precision scaled objects are as follows:

Bits Field Description
0-15 HSCALE This sixteen bit field contains an eight bit integer part and an

eight bit fractional part. The number determines how many pixels
are written into the line buffer for each source pixel.

16-31 VSCALE This sixteen bit field contains an eight bit integer part and an
eight bit fractional part. The number determines how many
display lines are drawn for each source line. This value equals
HSCALE for an object to maintain its aspect ratio.

32-47 VREMAINDER This sixteen bit field contains an eight bit integer part and an
eight bit fractional part. The number determines how many
display lines are left to be drawn from the current source line.
After each display line is drawn this value is decremented by one.
If it becomes negative then VSCALE is added to the remainder
until it becomes positive. HEIGHT is decremented every time
VSCALE is added to the remainder. The new VREMAINDER is
written back to the object.

48-63 HREMAINDER This determines the width of the first pixel to be displayed, in a
similar manner to VREMAINDER, so that the first pixel can be
narrower than the HSCALE.

Graphics Processor Object

This object interrupts the graphics processor, which may act on behalf of the Object Processor. The
Object Processor resumes when the graphics processor writes to the object flag register.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 15

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Bits Field Description
0-2 TYPE GPU object is type two
3-63 DATA These bits may be used by the GPU interrupt service routine.

They are memory mapped as the object code registers OB0-3,
so the GPU can use them as data or as a pointer to additional
parameters.

Execution continues with the object in the next phrase. The GPU may set or clear the (memory mapped)
Object Processor flag and this can be used to redirect the Object Processor using the following object.

Branch Object

This object directs object processing either to the LINK address or to the object in the following phrase.

Bits Field Description
0-2 TYPE Branch object is type three
3-13 YPOS This value may be used to determine whether the LINK address

is used.
14-16 CC These bits specify what condition is used to determine whether to

branch as follows:
0 Branch if YPOS == VC or YPOS == 7FF
1 Branch if YPOS > VC
2 Branch if YPOS < VC
3 Branch if Object Processor flag is set
4 Branch if on second half of display line (HC10 = 1)

17-23 unused
24-42 LINK This defines the address of the next object if the branch is taken.

The address is defined as described for the bit mapped object.
43-63 unused

Stop Object

This object stops object processing and interrupts the host.

Bits Field Description
0-2 TYPE Stop object is type four
3 STOP_INT Enables the CPU interrupt
4-63 DATA These bits may be used by the CPU interrupt service routine.

They are memory mapped so the CPU can use them as data or
as a pointer to additional parameters.

Mixer Object

It is now possible to blend pixels in real time using the object processor. The technique can be used for
distance haze or depth cueing, shadows, mist, flame, cross fading.

The mixer object type loads a "haze" colour and a fraction. This colour and fraction are applied to all
subsequent objects with distance haze enabled. Bit 56 of the first phrase in bit mapped objects enables
distance haze.

The mixer object is one of a class of object with type five (bits 0..2 = 5). Bits 3..7 provide 32 subtypes for
future use. Subtype zero is used for the distance haze parameters. The fraction F is held in bits 8..15 and
is in the range 0 to 255/256. The color H is held in bits 16..31 and will be treated as CRY or RGB
depending on the display mode. When distance haze is enabled a pixel with color P is replaced with a
new color given by the formula

 Color = F * P + (1-F) * H

Clearly the higher the value of F the closer the color will be to the original, the smaller the closer it is to the
"distance haze".

Distance haze slows down unscaled bit mapped objects to the same speed as scaled objects (1 pixel per
clock cycle).

Bits Field Description
0-2 TYPE Mixer object is type five.
3-7 SUBTYPE Mixer object is sub-type zero.
8-15 MIX_FRAC This the mixer control fraction, which controls the mix between

the object data and mixer color.

16-31 MIX_COLOR This is the mixer color, which is mixed with the object data
according to the fraction, when the mixer enable bit is set.

Description of Object Processor/Pixel path

The following two diagrams show where the object data path fits into the OBERON chip. All the diagrams
that follow are drastically simplified for clarity.

Object
Processor

Line
Buffer

Pixel
Generator

Bus
Interface

Memory
Controller Blitter Graphics

Processor Misc

Video
Timing

RGB Syncs

External
Bus

Memory
Control

Processor Bus

IO Bus

Oberon Chip Block Diagram

The processor bus is a 64 bit data, 24 bit address multi-master bus. The bus master can change on a
cycle by cycle basis with no overhead. The external CPU controls this bus when it is the bus master. The
IO bus is a 16 data 16 address bus used for reading and writing to internal memory and registers. The
bus interface logic and memory controller allows transfers of any width (one to eight bytes) to be made to
any width of external memory. The bus interface accommodates 16 and 32 bit microprocessors. The bus
interface also generates a multiplexed address for dynamic RAMs. The multiplexed address is a function
of memory width and number of columns. The memory controller only performs RAS cycles when the row
address changes. This allows contiguous regions of memory to be accessed much faster.

The line buffer is a bridge between two asynchronous parts of the chip. On one side are the processors
and memory. On the other side are the video timing and pixel generators. In fact there are two line
buffers. While one is written into by the Object Processor, the other is read by the pixel logic. Each line
buffer is a small 360x32 RAM with independent write strobes for the high and low words.

Each location in the line buffer may contain one 24 bit pixel or two 16 bit pixels.

Controlling
State
Machine

Address
Generator

Object
Register

Write back
Logic

Object Data
Path

CLUTAddress
Bus

Data
Bus

To Line
Buffer

Object Processor Block Diagram

The Object Processor reads object headers and image data and writes back modified headers. The write
back logic normally increases the data address by the data width. If the object is scaled then the data
address is increased by a multiple of the data width and the vertical remainder is modified.

The object data contains either physical colours in the case of 16 and 24 bits-per-pixel objects or logical
colours in the case of 1,2,4 and 8 bits-per-pixel objects. Logical colours are translated into physical
colours by the colour look up table or CLUT.

Page 16 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Processor
Data
Bus

Latch Multiplexers CLUT

Mux

Latch Line
Buffer

Address

Line
Buffer

Counter

Object Data Path

The Object Processor fetches data one phrase at a time until the image data, for that header, is
exhausted or until the line buffer address (X co-ordinate) has become invalid. The behaviour of the object
data path depends on the colour resolution of the object (bits-per-pixel) and on whether the object is
scaled.

In 24 bits-per-pixel mode each phrase contains two pixels (16 bits unused per phrase). The multiplexers
select each in turn and one 24 bit pixel is written into the line buffer per clock cycle. The CLUT is
bypassed for 24 bits-per-pixel objects.

In 16 bits-per-pixel mode each phrase contains four pixels. The multiplexers select two pixels at a time
and two pixels are written into the line buffer each clock cycle. The CLUT is bypassed for 16 bits-per-pixel
objects.

In 1, 2, 4 and 8 bits-per-pixel modes each phrase contains 64, 32, 16 and 8 pixels respectively. The
multiplexers select two pixels at a time. In 1, 2 and 4 bit modes the pixel is made up to eight bits by taking
the top bits from the top bits of the palette offset (a field in the object header). The two eight bit values are
used as addresses to a pair of identical CLUTs yielding two sixteen bit physical pixels which are written
into the line buffer every cycle.

If an object is scaled the Object Processor deals with one pixel at a time not pairs. Scaling is achieved by
incrementing the line buffer address independently of the counter controlling the multiplexer. For instance
if the line buffer address is incremented twice as often as the counter then the image will be twice as
wide.

There are two line buffers A & B. While A is written by the Object Processor B is being read by the pixel
logic. At the start of the next display line the buffers swap over so A is displayed and B is written. This
swap is effectively achieved by multiplexers on all the signals attached to the line buffers.

The above description is complicated by the following:

• If a pair of pixels must be written to an odd location in the line buffer they must be swapped
and one pixel delayed.

• The line buffer address decrements if the object is reflected.

• The colour to be written into the line buffer can be added to the previous value instead.

• One colour may be used as transparent and is not written into the line buffer.

• The line buffers also appear as memory to the rest of the system.

The pixel data path is shown in the following diagram. All the logic in this box runs from a different clock to
the previous logic, this is the video clock.

Line
Buffer
Address

Line
Buffer

Latch 2:1 mux CRY to

RGB

Mux RGB

A

B

C

A = 24-bit RGB

B = CRY

C = 16-bit RGB
Pixel Data Path

The operation of the pixel data path depends on the video mode.

In 24 bits-per-pixel mode the line buffer is read at the video clock frequency. The line buffer data is simply
latched and presented at the pins as red, green and blue data bits.

In CRY mode the line buffer is read at half the video clock frequency. Each read yields two 16 bit CRY
values. These are multiplexed into the CRY to RGB conversion logic during succeeding video clock
cycles. In this logic the more significant eight bits specify the colour and the less significant bits specify
the intensity or brightness. The colour value is used as an index to three ROMs. These ROMs contain the
relative amounts of red, green and blue for each colour. The outputs of the ROMs are multiplied by the
brightness to get a final eight bits of red, green and blue.

In RGB16 mode the line buffer is read at half the video clock frequency. Each read yields two 16 bit RGB
values. Bits 0-5 form the six most significant bits of green, bits 6-10 form the five most significant bits of
blue and bits 11-15 form the five most significant bits of red. All other bits are set to zero.

In all these modes a small amount of additional logic sets the output colour to black during blanking and
to the border colour where appropriate.

A fourth mode exists to allow the system to support very high pixel rates using external multiplexers and
DACs. This is called direct mode. In this mode the line buffer is read at the video clock frequency and the
2:1 multiplexer is driven by the video clock directly. The output of the 2:1 mux is connected directly to the
red and green outputs of the chip. This allows 16 bit values to be output at twice the maximum video
clock frequency. This provides a video bandwidth of up to 4 times the video clock rate (in bytes per
second). These values should be re-synchronised, de-multiplexed and converted to analogue outside the
chip. In this mode the blanking and border signals are output on the blue pins.

The above picture is slightly complicated by the following:

• The least significant bit in CRY and RGB16 modes can be sacrificed (treated as zero) and
used to control an external video switch through the incrust output pin.

• In CRY and RGB16 modes a background colour may be written into the line buffer after it has
been read.

• In CRY and RGB16 modes the least significant bit may be used to determine whether the
mode is CRY or RGB16. This could be used to drop a decompressed RGB picture into a CRY
picture without having to do a RGB to CRY conversion.

Refresh Mechanism

The average refresh frequency is defined by the REFRATE bits in the MEMCON2 register. Refresh cycles
are grouped together in order to lessen the impact on system performance. However they cannot be
performed in very large numbers or they would create "dead spots" in which no processing was possible.
This could disrupt the display or sound production.

Oberon uses a counter to accumulate a count of refresh cycles. When this counter reaches eight then
eight refresh cycles are done and the counter is set to zero.

Refresh cycles are also invoked when the Object Processor reaches the end of the object list. After the
Object Processor executes a STOP object OBERON performs as many refresh cycles as are necessary
to decrement the refresh counter to zero.

This mechanism guarantees that the minimum refresh rate is maintained without interrupting the Object
Processor and without creating "dead spots" of more than a few microseconds.

Interrupts

There are a variety of interrupt sources in the system, and three micro-processors which can be
interrupted: the CPU, the RCPU, the GPU and the DSP. The interrupt structure is summarised in this
diagram:

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 17

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

DSP GPU

68000 CPU

External 1

Timer 1

Timer 2

Sync. serial

CPU to DSP

External 0

DSP to CPU

Async. serial Puck interrupt
controller

Blitter

GPU object

Timer

CPU to GPU

Video

GPU to CPU

Stop object

Oberon interrupt
controller

RCPU

Video

GPU to CPU

Stop object

UART

CPU to RCPU

Puck interrupt

The DSP and GPU both contain interrupt control logic to allow each of their interrupt inputs to be
individually masked. The two interrupt controller both allow any of their interrupt inputs to be masked. The
interrupt sources are:

External 0 Interrupt from the expansion connector

External 1 Interrupt from the expansion connector

Timer 1 Interrupt from Puck programmable timer 1

Timer 2 Interrupt from Puck programmable timer 2

Sync. serial Interrupt from the synchronous serial / I2S interface.

CPU to DSP Interrupt to the DSP generated by a write to the DSPINT0 bit of the DSP
control/status register

DSP to CPU Interrupt to the host generated by a write to the CPUINT bit of the DSP control/status
register

Async. Serial Interrupt from the Asynchronous Serial Interface

Blitter Interrupt generated by the blitter on blitter completion

GPU object Interrupt generated by the object processor on processing a GPU object

CPU to GPU Interrupt to the GPU generated by a write to the GPUINT0 bit of the GPU
control/status register

Timer Interrupt generated by Oberon’s Programmable Interrupt Timer

Video Interrupt generated by the video time-base, on a line selected by the VI register

GPU to CPU Interrupt to the host generated by a write to the CPUINT bit of the GPU
control/status register

Stop object Interrupt generated by the object processor on processing a stop object

CPU to RCPU Interrupt to the RCPU generated by a write to the RCPUINT0 bit of the RCPU
control/status register

Puck interrupt Composite interrupt signal from the Puck interrupt controller

UART RCPU speicific interrupt from the asynchronous serial interface

Colour Mapping

Introduction

Jaguar produces a video output using eight digital bits each for red, green and blue. This allows each
output to have two hundred and fifty-six intensity levels, and is enough to allow smooth shading from one
colour to another. This twenty-four bit scheme is known as true-colour.

Jaguar can produce a display based on true colour pixels stored in memory in long words, with eight bits
unused, and this is known as true colour mode. However, these thirty-two bit pixels are large and so
consume a lot of memory; and they also consume a lot of memory bandwidth to fetch from RAM for
display.

True-colour mode is therefore unattractive for general use, as most images do not need its range of
colours, and it is desirable to avoid the detrimental effects it has on performance. True colour mode is
therefore a special case, and when it is used only true-colour images may be displayed.

In normal operation, the Jaguar display system is based on sixteen bit pixels. Images in memory may be
stored either as sixteen bit pixels, or as one, two, four or eight bit logical colours. These logical colours are
used as indices into a Palette or Colour-Look-Up-Table (CLUT), which contains their corresponding
sixteen bit physical colours.

Sixteen bit pixels may be stored as six bits of green, and five bits each for red and blue, but this no longer
allows smooth shading. There is therefore an additional scheme, known as the CRY scheme (cyan, red
and intensity, see below) which still allows smooth intensity shading. This CRY scheme is now discussed
in greater detail.

The CRY Colour Scheme

Gouraud Shading Requirements
The CRY scheme was derived principally to meet the requirements of Gouraud Shading. This is a
technique that models the appearance of a lit curved surface from a set of polygons. The problem the
technique helps to overcome is that if the intensity due to a light source is calculated for each polygon and
the polygon is painted in that colour, then the polygons that make up that surface are each clearly visible.

The technique of Gouraud shading helps avoid this by calculating the intensity at each vertex, and then
linearly interpolating along each polygon edge, and hence along each scan line that makes up the display.
If only white light sources are considered, then the only variation is one of luminous intensity, and not one
of colour. It is therefore attractive to have a colour scheme that contains an intensity vector, as the
Gouraud shading calculations have then only to be performed for one value, rather than the three values
that would have to be calculated in a true colour scheme.

As there is general agreement that eight bits is enough to give smooth intensity shading (and it is a round
number), it was therefore necessary to come up with a scheme that allowed the colour to be expressed in
eight bits.

Colour Space

The colour space to be modelled may be considered as the RGB cube shown, where the lowest vertex
represents black, and the highest white. The three edges running out from black are the three orthogonal
vectors red, green and blue. The sum of these three vectors can describe any point in the cube. The three
lower vertices therefore represent fully saturated red, green and blue, and the three higher ones yellow,
cyan and magenta.

REDGREENBLUE

WHITE

BLACK

YELLOWCYAN MAGENTA

This colour space model is only one of many ways of considering what the human brain 'sees', but it has
the advantage of modelling the display system used by colour monitors, and of being mathematically
simple.

Physical requirements

The intensity vector can be considered as that component of the sum of the red, green and blue vectors
that lies along the diagonal of the RGB cube from black to white. This is not the 'true' intensity, which is a
weighted sum of red, green, and blue; but it bears a linear relationship to it when the colour is not
changed.

Page 18 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

It is necessary to come up with a scheme to encode the colour value in the remaining eight bits of the
pixel. The following requirements were made on this scheme:

1. All two hundred and fifty-six values should represent valid, and different, colours.

2. The colours should be well spread out across the colour space.

3. Colours should be able to be mixed by linearly averaging their colour values.

4. An intensity value of zero must be black.

As the remaining colour space without intensity is two-dimensional, two vectors are required to represent
a point in it. An r, theta scheme was discarded as it would not meet requirement two, and so a scheme
based on two x, y vectors was chosen.

To meet requirement one, the two vectors must describe a point on a square area. As no existing colour
space model is square when viewed along the intensity axis, it was necessary to come up with a new one.

The approach chosen, after considerable experimentation, was to take the view along the intensity axis of
the RGB cube, which is a hexagon, and distort it into a square. This does not quite meet requirement 3,
but is close to it.

CRY Colour Scheme

The colour mapping scheme chosen is based on defining 256 points on the upper surface of the RGB
cube.

WHITE

GREEN

RED
BLUE

MAGENTA

CYAN YELLOW

BLUE RED

GREEN

R
C

YELLOWCYAN

MAGENTA

WHITE

In the figure shown, the hexagon corresponds to a view looking down onto the RGB cube. This hexagon
is distorted onto a square, whose X and Y co-ordinates are four bit values. This defines 256 colour levels.
The choice of green as the primary colour that lies on the middle of one face was made after observing
the effects of the three possible mappings, and corresponds with the expected result, as the human eye is
least able to distinguish shades of green.

Note that in each of the three areas defined on the hexagon and square, one of red, green or blue is at full
intensity, and the others vary. At the centre (white) they are all at full intensity. The intensity scale for any
given colour lies along the line between black, and the point on the top surface of the cube defined in the
colour table.

Colours may be averaged by taking the average of their eight bit intensity value, and each of the four bit X
and Y components of the colour value. This will not produce exactly the same colour as the point midway
between them in the RGB cube, but will be close to it.

This is a summary of the pros and cons of the CRY scheme:

Advantages of CRY
• Smooth intensity shading from 16 bit pixels
• Better matched to the capabilities of the human eye than 5:6:5 bit RGB schemes
• Suitable for efficient Gouraud shading

Disadvantages
• Steps are visible in smooth changes of saturation or hue
• Translation from RGB to CRY is not straightforward
• Non-standard

RGB to CRY Conversion

The best technique is to calculate the intensity value, which is the largest of red, green and blue; and from
this the ideal ROM entry for that colour, by scaling the RGB values by 255 / intensity. This can then be
matched to the actual ROM tables to find the nearest match. A quick way of doing this is by a lookup
table. It is not necessary for this to have 224 entries, it turns out that taking the top 5 bits of each of the

red, green and blue values (rounding where appropriate) and using a 32768 element lookup table is
adequate.

Physical Implementation

The eight bit colour value is used to index a look-up table of modifier values for each of red green and
blue; which is multiplied by the intensity value to give the output level for each drive to the display. The
look-up tables are:
RED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 34 34 34 34 34 34 34 34 34 34 34 34 34 34 19 0
 68 68 68 68 68 68 68 68 68 68 68 68 64 43 21 0
 102 102 102 102 102 102 102 102 102 102 102 95 71 47 23 0
 135 135 135 135 135 135 135 135 135 135 130 104 78 52 26 0
 169 169 169 169 169 169 169 169 169 170 141 113 85 56 28 0
 203 203 203 203 203 203 203 203 203 183 153 122 91 61 30 0
 237 237 237 237 237 237 237 237 230 197 164 131 98 65 32 0
 255 255 255 255 255 255 255 255 247 214 181 148 115 82 49 17
 255 255 255 255 255 255 255 255 255 235 204 173 143 112 81 51
 255 255 255 255 255 255 255 255 255 255 227 198 170 141 113 85
 255 255 255 255 255 255 255 255 255 255 249 223 197 171 145 119
 255 255 255 255 255 255 255 255 255 255 255 248 224 200 177 153
 255 255 255 255 255 255 255 255 255 255 255 255 252 230 208 187
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 240 221
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
GREEN 0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255
 0 19 38 57 77 96 115 134 154 173 192 211 231 250 255 255
 0 21 43 64 86 107 129 150 172 193 215 236 255 255 255 255
 0 23 47 71 95 119 142 166 190 214 238 255 255 255 255 255
 0 26 52 78 104 130 156 182 208 234 255 255 255 255 255 255
 0 28 56 85 113 141 170 198 226 255 255 255 255 255 255 255
 0 30 61 91 122 153 183 214 244 255 255 255 255 255 255 255
 0 32 65 98 131 164 197 230 255 255 255 255 255 255 255 255
 0 32 65 98 131 164 197 230 255 255 255 255 255 255 255 255
 0 30 61 91 122 153 183 214 244 255 255 255 255 255 255 255
 0 28 56 85 113 141 170 198 226 255 255 255 255 255 255 255
 0 26 52 78 104 130 156 182 208 234 255 255 255 255 255 255
 0 23 47 71 95 119 142 166 190 214 238 255 255 255 255 255
 0 21 43 64 86 107 129 150 172 193 215 236 255 255 255 255
 0 19 38 57 77 96 115 134 154 173 192 211 231 250 255 255
 0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255
BLUE 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 240 221
 255 255 255 255 255 255 255 255 255 255 255 255 252 230 208 187
 255 255 255 255 255 255 255 255 255 255 255 248 224 200 177 153
 255 255 255 255 255 255 255 255 255 255 249 223 197 171 145 119
 255 255 255 255 255 255 255 255 255 255 227 198 170 141 113 85
 255 255 255 255 255 255 255 255 255 235 204 173 143 112 81 51
 255 255 255 255 255 255 255 255 247 214 181 148 115 82 49 17
 237 237 237 237 237 237 237 237 230 197 164 131 98 65 32 0
 203 203 203 203 203 203 203 203 203 183 153 122 91 61 30 0
 169 169 169 169 169 169 169 169 169 170 141 113 85 56 28 0
 135 135 135 135 135 135 135 135 135 135 130 104 78 52 26 0
 102 102 102 102 102 102 102 102 102 102 102 95 71 47 23 0
 68 68 68 68 68 68 68 68 68 68 68 68 64 43 21 0
 34 34 34 34 34 34 34 34 34 34 34 34 34 34 19 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 19

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

The Jaguar RISC Processors

 “The wildest hath not such heart as you.
Run when you will.”

 Act II. Scene 1.

Midsummer contains three RISC processors. These are a proprietary Atari design optimised for graphics
animation and sound, and known as the J-RISC processors. A custom design is used because game
console requirements are quite different to work-station requirements, which is the target application of
most commercial RISC processors. The J-RISC processors will control all aspects of Midsummer
operations. The three J-RISC processors are:

• the Graphics Processing Unit, GPU, which is tightly coupled to the Blitter and is the rendering engine

• the Digital Sound Processor, DSP, which creates audio and has a DAC and private sound memory

• the RISC Central Processor, RCPU, which is the system controller and geometry engine

These three processing units are based on the same design, have identical instruction throughputs, and
have nearly identical instruction sets and control registers. However they are all intended for quite
separate tasks. The RCPU is new to Midsummer, the GPU and DSP were both present in Jaguar One.

This section describes all three processors, with differences between them marked appropriately.

What is a Jaguar RISC Processor?

The Jaguar RISC Processor is a simple, very fast, micro-processor. It is intended for performing the
functions associated with generating graphics and sound, such as three-dimensional modelling, shading,
fast animation, unpacking compressed images, rendering, and audio synthesis and sample playing.

The Jaguar RISC processors correspond to the accepted notion of a RISC Processor (Reduced
Instruction Set Computer). This means that:

• most instructions execute in one clock cycle
• all computational instructions involve registers
• memory transfers are performed by load/store instructions
• instructions are of a simple fixed format, with few addressing modes
• there is a wealth of registers, and local high-speed memory

It has several features to give high computational powers, including:

• highly pipe-lined architecture
• one instruction per clock cycle peak throughput
• internal program and data RAM
• register score-boarding
• sixty-four thirty-two bit registers
• barrel shifter for fast shifts of any length
• one clock cycle sixteen bit multiplies and multiply/accumulates
• high speed matrix multiplication
• fast hardware divide unit
• high-speed interrupt response, including video object interrupts
• close coupling with the Blitter (in the case of the GPU)

The J-RISC processor also has many of the characteristics of a DSP (digital signal processor), in that it
can perform very fast multiply and multiply/accumulate operations. These are characteristically used in
graphics for 3D transforms, and in audio for digital filters. Some would consider the processor to be a
RISC / DSP hybrid.

Programming the J-RISC Processor

The J-RISC processor is programmed in the same way as any other micro-processor. It has a full
instruction set with a broad range of arithmetic instructions, including add, subtract, multiply and divide;
Boolean instructions; logical and arithmetic shifts; and bit-wise instructions. It has a range of instructions
for loading and storing values in memory, with either register indirect, register indirect plus register offset,

or register indirect plus immediate offset addressing modes. It has jump relative and absolute instructions,
both of which may be made dependant on combinations of the zero, carry, overflow and negative flags.
There are also some more specialist instructions suited to computing matrix multiplies, and some useful
aids to floating-point calculations.

The J-RISC processor is a full thirty-two bit processor in that all internal data paths are thirty-two bits wide,
and all arithmetic instructions (except multiply) perform thirty-two bit computations. The instructions are
sixteen bits wide.

There are sixty-four internal thirty-two bit general purpose registers, of which thirty-two are visible at one
time. There is local high-speed thirty-two bit RAM, which is where its instructions and working data are
normally stored. There is access to external memory via the sixty-four bit co-processor bus, and the
processor can perform byte, word, long or phrase data transfers on this bus. It can also execute its
instructions from external RAM.

Design Philosophy

The J-RISC processor normally executes one instruction per clock cycle, and is therefore capable of very
high instruction throughput. The RISC versus CISC debate is a complex one, and has now been largely
resolved in that RISC seems to have won. The RISC approach was chosen principally because it
occupies less silicon area. This leads to a processor design without micro-code, effectively the instruction
set is the micro-code, and most instructions execute in one clock cycle. The advantage is that instructions
are executed quicker, but the disadvantage is that some operations require more instructions to execute.

The J-RISC processor is also intended to perform rapid floating-point arithmetic. It has no floating-point
instructions as such, but has some specific simple instructions that allow a limited precision floating-point
library to be capable of well in excess of one million floating point operations per second.

The J-RISC processor was originally intended to be programmed in assembly language, rather than in a
compiled language, as the tasks it is intended to perform are simple repetitive operations, best written in
assembly language. It is therefore a great deal more “programmer friendly” then many RISC processors.
The RCPU has some specific enhancements to make it suitable for running C code at high speed.

Pipe-Lining

The J-RISC processor design makes extensive use of pipe-lining to improve its throughput. This means
that although it can achieve a peak rate of one instruction per clock cycle, each instruction is actually
executed over several clock cycles, but only spends one clock cycle at each pipe-line stage. It is
important to understand this as it does have some significant consequences on behaviour.

For a typical instruction, such as ADD, the pipe-line stages are:

 1 decode instruction

 2 read operands from registers

 3 add operands

 4 write result back to register

In addition to these stages, a pre-fetch unit attempts to maintain a small queue of unexecuted
instructions, to keep the instruction execution unit busy.

Register Score-Boarding

The main side effect of the pipe-lined nature of its operation is the interaction of instructions at different
stages of the pipe-line. They may affect the same operand, or the same piece of the hardware, and so a
conflict can potentially arise.

For instance, if the instruction after an ADD was a second ADD of another value to the same register;
then if the two instructions were just to follow each other through the pipe-line, then the second ADD
would use the old value (the value from before the first ADD). Fortunately, the processor hardware
detects this erroneous condition and suspends execution until the correct value is ready. Clock cycles that
occur during these hold-ups are referred to as pipe-line stalls and are a fancy RISC designer name for
what are more traditionally known as wait states.

The figure shows the data flow associated with the operands of an arithmetic instruction. The thick lines
correspond to a pipe-line stage, so that when an instruction is at the Read Operands stage, a previous
arithmetic instruction may be at the Compute Result stage, and the potentially another one before that at
the Write Back Result stage.

Page 20 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

1 - Read Operands

2 - Compute Result

3 - Write back Result

RAM

ALU

RAM

Two problems arise from this architecture:

1. The RAM used for the registers has only two data ports, so if the instruction at stage three has
to write back to a different register from the two registers being read by the instruction at stage
one, then a clash occurs.

2. The instruction at stage one of the pipe-line may need to read a value being computed by the
instruction at stage two, but this value will not be available until the instruction at stage two
reaches stage three.

The J-RISC processor operates what is known as a score-board to help the programmer avoid a whole
class of these problems. This tags registers that will alter once some operation has been completed, and
will force program flow to stall (wait) if an instruction reads a tagged register. This mechanism also applies
to the flags, and will stall if:

- an instruction would read a register that is still in the process of being computed by the ALU.

- an instruction would perform a conditional jump, or add or subtract with carry, before the flags
have been set as the result of some arithmetic operation.

- an instruction would read a register that is being read from internal memory.

- an instruction would read a register that is the target of a divide operation - as the divide unit
is relatively slow, this can cause a significant delay.

- an instruction would read from a register that is waiting to be loaded from slow external
memory (which takes a variable amount of time).

Register Write-Back

The score-board unit also controls the writing back of computed values. The registers are a bank of dual-
port RAM, so it is not possible to read two register values simultaneously while writing to a third.

If the register to be written back to is being read by the instruction currently at stage 1 of the pipe-line, or if
one of the operands of that instruction does not involve a register read, then the write-back will be
concealed - this is known as data forwarding. Otherwise, the instruction will be held up one cycle while the
computed value is written back.

The score-board unit controls all operations that involve writing to registers, and will also generate a wait
state if the instruction that would have executed reads two registers, neither of which is the target of the
write. Write-back data sources are:

- the result of an ALU computation

- the result of a divide operation (this occurs in parallel with the ALU)

- the data from an internal load operation

- the data from an external load operation

If two of these are to be written back simultaneously, execution is always held up for a clock cycle.

One technique that can be used to help avoid wait states from the score-board unit is to interleave two
sets of calculations, i.e. ensure that consecutive instructions do not use the same registers, but that
instructions two apart generally do.

Jump Instructions

Pipe-lining also affects the execution of jump instructions. The transfer of control does not occur until the
instruction after the jump instruction has been executed. This can be confusing, but helps to increase the

overall instruction throughput. The safest technique is to follow all jump instructions with a NOP (null
operation), but it is quite reasonable to place almost any other instruction here - but see the notes below
on program control flow on page 8.

Memory Interface

The J-RISC Processors are intended to operate in parallel with the other processing elements in the
Jaguar system. In order to do this, a well-behaved program should only make occasional use of the main
memory bus. The J-RISC processor therefore has some local fast thirty-two bit static memory.

This memory is intended to be used for both program and data. It can be cycled at the main clock rate,
and so is extremely fast. It may be viewed as a simple cache RAM, with software cache control - this
technique is known as visible caching. When the J-RISC processor is executing code out of internal RAM,
program fetch cycles will usually occupy about half the RAM bandwidth.

To load up a program into the RAM within the GPU, the best technique is to use the local DMA engine,
described later.

RCPU only: The RCPU fetches its instructions through an I-cache, which will cache instruction fetches
only. This is described in more detail on page 8.

To the programmer the local RAM, local hardware registers, and external memory all appear in the same
address space. The internal memory controller determines whether a transfer is local or external, and
generates the appropriate cycle. The only difference to the programmer is that only 8, 16, or 32 bit
transfers are possible within the local address space, whereas 8, 16, 32 or 64 bit transfers are permitted
externally. Within the local address space, only 32 bit transfers may be performed to registers (and the
GPU/blitter texture memory), but 8, 16 or 32 bit transfers may be performed to local memory.

The local RAM sits on an internal 32 bit bus. Also present on this bus are various hardware control
registers. When a transfer occurs outside the local address space, a gateway connects the local bus to
the main bus. If a sixty-four bit transfer is requested, a special register is used for the ‘other’ half of the
data. This gateway also contains a simple DMA engine that allows fast transfers between internal and
external memory.

This local address space is also available to external devices via the 16 bit I/O bus, see below.

The local bus can therefore perform transfers for four quite separate mechanisms. These are, in
decreasing order of priority:

1. CPU I/O access
2. Local DMA transfer
3. Operand data transfer
4. Instruction fetch

External View of Local Memory Space

The internal address space is accessible by any other Jaguar bus master. This is part of the system I/O
space. All of the I/O space is normally viewed as 16 bit read/write memory, but because the memory is
actually 32 bits wide, all transfers must be performed in word pairs, in the order low address then high
address.

GPU only: by adding 8000 hex to the I/O address the internal memory space is available to external bus
masters as 32 bit write only memory, which is faster to access for a bus master which can
perform 32 bit transfers. Specifically, this allows the blitter to copy data into the GPU space
more rapidly than it would using the 16 bit space - for maximum transfer speed use the blitter
in phrase mode, writing to the 32 bit address range.

Data Ordering Conventions

The J-RISC processor can operate in both a big-endian and little-endian environment, and as long as the
memory interface is programmed to the correct endian mode, and the transfer requested is the width of
the operand required, then this operation is largely invisible to the programmer.

The instruction execution order may be little-endian or big-endian - with the exception that move
immediate data is inherently little endian, i.e. its word ordering is least significant word then most
significant word. (Big-end ordering sucks)

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 21

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Load and Store Operations

The J-RISC processor has a set of load and store instructions, each of which take two register operands.
One register is used to provide the address, the other is either read to supply data to be stored, or is
written with load data.

Load and stores may be performed at byte, word, long-word and phrase width. Bytes and words are
aligned with bit 0, and when loaded the rest of the register is set to zero. When phrases are read or
written, a register within the local address space should already contain the other long-word for store
operations, or is loaded with the other long-word for load operations. The fastest way to perform block
transfers, however, is to use the DMA controller.

Load and store operations may also be performed using one of two simple indexed addressing schemes.
These are both based on using either R14 or R15 as a base register, with either a five bit unsigned offset
(in long words) encoded into one of the register fields, or another register containing the offset. There is a
two clock cycle overhead involved in using these instructions, as the address has to computed.

Load and store operations will normally complete in one clock cycle, or two clock cycles for indexed
addresses. The transfer may not be complete at this point, and if another load or store operation occurs
before the previous one has completed it will be held up. Load data is written under the control of the
score-board unit, which is described elsewhere.

The gateway between the local bus and the external co-processor bus contains a control block for
generating external memory transfers. When this block is idle, load and store operations complete as
quickly as they would in local memory. For load operations, the data is not loaded into the target register,
however, until the external transfer has taken place. The score-board mechanism prevents use of this
data before it has been loaded, but other computation may take place. If there is another load or store
instruction in the program before the gateway has completed its transfer, then it will be held up until the
gateway is idle.

Operand data transfers may occur at two bus priorities in external memory, either at the normal priority, or
at the higher DMA priority level. This is controlled by the DMAEN flag. This does not affect program reads,
which are always at normal priority. Bus priority is discussed elsewhere. This priority control bit must not
be changed while an external memory cycle is active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it in an interrupt service routine.

Note that it is quite safe to use the same register as both operands of a load (or store) operation. These
operations are quite legal:
l oad (r 1) , r 1 ; over - wr i t e r 1 wi t h dat a af t er usi ng i t as addr ess
l oad (r 14+2) , r 14 ; s i mi l ar l y, t hi s i s per f ec t l y saf e
st or e r 2, (r 2) ; as i s t hi s , t hough l ess usef ul

DMA Controller

The J-RISC processor has a simple DMA controller as part of the interface between its internal and
external space (this interface is called the bus gateway). This allows phrase-mode transfer to be
performed between internal and external memory at a rate limited solely by the external bus speed. This
allows a maximum speed of one phrase transfer every two clock cycles to and from of external DRAM.

This DMA engine is intended to speed up program loads, and also to reduce processor usage of the
external bus by allowing data structures to be block transferred between internal and external memory. As
internal memory can be accessed using byte and word transfers, as well as longs, data structures can be
easily manipulated internally.

The controller can only perform transfers either from internal memory to external memory, or vice versa. It
cannot move things within the internal space, or perform transfers within external memory. It can only
transfer a whole number of phrases, and the start address must lie on a phrase boundary in external
memory, and on a long-word boundary within internal memory.

The DMA controller is very easily driven. An internal address and an external address must be written for
each transfer, because they count during the transfer; some mode bits should be set to give the direction
and bus priority of the transfer, unless these have not changed since the previous transfer; and the a byte
length count is written, and writing this initiates the transfer. The DMA controller must only be started by
the processor to which it belongs, unless that processor is not running.

The individual control registers are discussed further on in this document.

Arithmetic Functions

The J-RISC processor contains a powerful ALU section, which contains a thirty-two bit adder/subtracter, a
thirty-two bit Boolean function unit, a sixteen bit parallel multiplier, and a thirty-two bit barrel shifter, all of
which perform their respective functions in one clock cycle.

It also contains a divide unit. This performs serial division at the rate of two bits per clock cycle, on thirty-
two bit unsigned operands, producing a thirty-two bit quotient. The operation of this runs in parallel with
normal operation.

The ALU has the following set of flags:

Z zero set appropriately by all arithmetic operations, normally being set if the result
of the operation was zero.

N negative set appropriately by all arithmetic operations, normally being set if the result
of the operation was negative (bit 31 is a one).

C carry set according to carry or borrow out of all add and subtract operations; set
with the bit that is shifted out of shift and rotate operations for shift by one;
left undefined by other arithmetic operations.

V overflow set if arithmetic overflow, i.e. carry or borrow has occurred into the sign bit of
a two’s complement number; also indicates the state of the bit set or cleared
by a bit set or clear instruction prior to the operation.

There are also some specialist arithmetic functions:

• Saturate the thirty-two bit operand is clipped to an unsigned value of eight, sixteen or twenty-four
bits. This is helpful for dealing with accumulated rounding errors, etc. These are SAT8, SAT16 and
SAT24.

• Floating Point support functions available are an instruction which gives the amount by which a
value has to be shifted to re-normalise it (NORMI), and an instruction which removes the exponent
from a floating-pint value (MTOI).

• Pixel Averaging sixteen bit RGB or CRY pixels can be unpacked so that their fields are separated
to allow the values to be added together without overflow occurring from one field to the next for up to
32 pixel. See the description of PACK and UNPACK below.

DSP only: The DSP replaces the unsigned saturation functions of the GPU with two signed operations.
SAT16S takes a signed 32 bit operand and saturates it to a signed 16 bit value, i.e. if it is less
than $FFFF8000 it becomes $FFFF8000 and if it is greater than $00007FFF it becomes
$00007FFF. SAT32S takes a signed 40 bit operand (see the section below entitled 'Extended
Precision Multiply / Accumulates') and saturates it to a signed 32 bit value in a similar manner.

Interrupts

The J-RISC processors can be interrupted by several sources. Interrupts force a call to an address in
local RAM, given by sixteen times the interrupt number (in bytes), from the base of RAM. It is the
responsibility of the programmer to preserve the registers and flags of the underlying code. Primary
register 31 is the interrupt stack pointer. Primary register 30 is corrupted when instruction flow is
transferred to the interrupt service routine. Neither register should be used for any other purpose when
interrupts are enabled.

Interrupts are allocated as follows:

GPU:

4 Blitter, indicating Blitter completion
3 Object Processor
2 Timing generator
1 DSP interrupt, the interrupt output from Puck
0 CPU interrupt

RCPU:

5 UART interrupt
4 Video interrupt
3 Object processor CPU interrupt
2 GPU to CPU interrupt
1 Puck interrupt

Page 22 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

0 CPU interrupt

DSP:

5 External interrupt 1, from the expansion bus
4 External interrupt 0, from the expansion bus
3 Timer interrupt 1, from the Puck programmable timer 1
2 Timer interrupt 0, from the Puck programmable timer 0
1 I2S interface interrupt, from the synchronous serial interface
0 CPU interrupt, from a write to the DSP control register

The flags register contains individual interrupt enables for each of these sources, as well as a master
interrupt mask for all interrupts. When the master interrupt mask is set, the primary register bank is
selected (see below).

When an interrupt occurs, the master interrupt mask bit is set. The individual enables are not affected, but
no other interrupts will be serviced until the mask bit is cleared. The interrupt service routine should
normally clear the master interrupt mask, and the appropriate interrupt latch, and enable higher priority
interrupts immediately.

The value pushed onto the R31 stack is the address of the last instruction to be executed before the
interrupt occurred. The interrupt service routine should therefore add two to this value before using it to
return from the interrupt.

The interrupt latches may be read in the status port, and are cleared by writing a one to their clear bits,
writing a zero leaves them unchanged.

The cause of the interrupt may be determined by the location jumped to, but not from the flags register, as
more than one interrupt latch bit may be set.

There is a certain degree of interrupt prioritization, in that if two interrupts arrive within a few clock cycles
of each other, the higher numbered will be serviced first. Beyond this, interrupt prioritization is under
software control, as described above.

The only operations that are atomic are single instructions, or certain instruction combinations (see
below). Interrupts may be disabled by clearing all the enable bits. It is therefore not practical for the
interrupt stack to be shared with the underlying code, unless all interrupts are masked across stack
operations.

An example interrupt service routine, which does no more than clear the interrupt, is shown below. The
interrupt source was interrupt 2.
 i nt _ser v:
 movei GPU_FLAGS, r 30 ; poi nt R30 at f l ags r egi st er
 l oad (r 30) , r 29 ; get f l ags
 ; addi t i onal code may be i nser t ed her e
 bc l r #3, r 29 ; c l ear I MASK
 bset #11, r 29 ; and i nt er r upt 2 l at ch
 l oad (r 31) , r 28 ; get l ast i nst r uct i on addr ess
 addq #2, r 28 ; poi nt at next t o be execut ed
 addq #4, r 31 ; updat i ng t he st ack poi nt er
 j ump (r 28) ; and r et ur n
 st or e r 29, (r 30) ; r est or e f l ags

Similar interrupt service routines can handle all the interrupts. Note the following points about this code:

• Registers R28 and R29 may not be used by the under-lying code as they are corrupted, in addition to
R30 and R31 which are always for interrupts only.

• Interrupts are re-enabled on the instruction after the jump. If they were enabled any sooner then no
other interrupt service routine would be able to use R28 and R29, as they could potentially corrupt
them before this service routine had completed.

• You should modify the bit set instruction shown as setting bit 11 to set the appropriate bit for the
interrupt being serviced.

• If you modify this interrupt procedure to re-enable interrupts prior to the exit code, then you should
change R30 to another register, as R30 is corrupted when a second interrupt occurs.

GPU only: If the interrupt source was the Object Processor, then the interrupt service routine should read
the Object Code registers, if required, and then re-start the Object Processor by writing to the Object
Processor Flag register, as quickly as possible.

For your information: it may interest you to know how the RISC processor enters an interrupt service
routine. When an interrupt occurs, the following “hidden” instruction sequence is forced in the instruction
stream at the end of the current atomic operation (one or more instructions):
 subqt #4, r 31 ; pr e- decr ement s t ack poi nt er
 move pc , r 30 ; addr ess of i nt er r upt ed code
 st or e r 30, (r 31) ; st or e r et ur n addr ess

 movei #ser vi ce_addr ess, r 30 ; poi nt er t o I SR ent r y
 j ump (r 30) ; j ump t o I SR
 nop

This code in not fetched from anywhere, but is directly injected into the instruction stream, so the PC read
that you read while this is happening is that of the last instruction to be executed prior to the interrupt.

Atomic Operations

It is necessary for certain operations to be atomic, i.e. interrupts may not occur during these operations.
Certain instruction types temporarily lock out interrupts while they complete their operation. These are:

• Immediate data moves, using the MOVEI instruction. Interrupts are locked out while the two words of
immediate data are fetched.

• Matrix multiply operations, using the MMULT instruction. Interrupts are locked out until the operation
has completed.

• Multiply and accumulate operations, using the IMULTN and IMACN instructions. The result register is
not preserved by interrupts, and therefore any multiply/accumulate operation must consist of a
sequence of IMULTN and IMACN instructions followed by a RESMAC instruction, with no intervening
instructions. The IMULTN and IMACN instructions are always atomic with the succeeding instruction.
See the section below on multiply / accumulate instructions.

• Jump instructions are always atomic with the instruction which succeeds them.

Sharing Hardware

The Jaguar hardware supports parallel processing, which is both a blessing and a curse. It offers much
greater processing power when used well, and much greater scope for disaster when used badly.

There is nothing new about parallel processing, you might consider an interrupt and its underlying code to
be parallel processes. However the Midsummer hardware supports four CPUs which can all execute
simultaneously, and which can all support interrupts from a variety of sources. Most of the problems this
can introduce are at a software level and are beyond the scope of this document, however there are some
important warnings when it comes to sharing the Jaguar hardware.

Most of the hardware in Jaguar cannot be shared between two processes without special steps to ensure
that only one can use it at a time. This is usually implemented by a semaphore, by which one process
flags another if it can use the hardware resource. The two processes might be running on separate
processors, or might be running on the same one if at least one is an interrupt.

An example of a hardware resource that cannot be shared is the blitter, where it would be disaster if two
processes tried to set up a set of blitter parameters at the same time. Within the J-RISC processors, the
divide remainder and mode, the high long word register, and the matrix multiplier all fall into this area.
Careful attention should be paid to this if you want to share a piece of hardware.

Program Control Flow

The J-RISC processor runs through memory executing instructions unless it encounters a jump
instruction, an interrupt occurs, or it stops itself. The instruction stream is 16 bit words, which are fetched
into a small pre-fetch queue which requests 32 bits per fetch.

Jump Instructions

Two types of jump are supported, relative and absolute. Jump relative takes a signed five or ten bit offset,
which is treated as an offset in words, and is added to the program counter. Jump absolute transfers the
contents of a register into the program counter.

Both types of jump may be conditional on the contents of the ALU flags. If the appropriate condition is not
met, then the jump instruction is ignored and program flow continues with the next instruction after the
jump. Only the five bit offset relative jumps are conditional, then ten bit offset jump relative is
unconditional.

The instruction after a jump is always executed. This is a side-effect of the pre-fetch queue. Programmers
may choose either to place a NOP after every jump instruction, or may take advantage of this to place a
useful instruction after the jump which will be executed whichever branch is followed.

The program counter may also be copied into a register, using the MOVE PC,Rn instruction.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 23

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

The J-RISC processor can cease operation by clearing the appropriate GO bit in the local control register
(described below). It may then only be restarted by an external write to this register. The GO bit must only
be cleared by the processor it controls, although any processor can set it (although it may be cleared
externally for debug when in single-stepping mode).

When a jump instruction is executed, and the condition is met, the following sequence occurs:

• interrupts are temporarily masked
• the next instruction is allowed to flow through the pipe-line
• the pre-fetch queue is flushed
• the new address is loaded into the program counter
• instruction fetch start from the new address to reload the pipe-line
• the temporary interrupt mask is cleared

Illegal Instruction Combinations

• Do not place a MOVEI instruction after a jump, as the jump will take effect before the data is fetched,
and so will change where the immediate data is fetched from.

• Do not place two jump instructions one after the other (next to each other in memory), the results are
not predictable, and may not be relied on.

• Do not place a MOVE PC to register instruction immediately after a jump absolute or jump relative
instruction, the value read can not be relied upon.

• Do not follow an IMACN or IMULTN instruction by anything other than an IMACN instruction or a
RESMAC instruction (see below).

• Do not precede an MMULT instruction by a LOAD or STORE instruction.
• Do not follow a jump instruction with an indexed store or load instruction. This may cause interrupts

to behave unpredictably.

Conditional Jumps

Conditional jumps encode from a five bit flag field. This gives useful jumps as follows (unused codes are
reserved for future modifications).

Field Decode Name Code Jump on Condition
00000 1 true T jump always
00001 /Z not equal NE zero flag is clear
00010 Z equal EQ zero flag is set
00011 C + Z low or same LS* carry flag is set or the zero flag is set
00100 /C carry clear CC carry flag is clear
00101 /C � /Z high HI carry flag is clear and zero flag is clear
00110 /C � Z ?? carry flag is clear and zero flag is set
00111 V overflow set VS* overflow flag is set
01000 C carry set CS carry flag is set
01001 C � /Z ?? carry flag is set and zero flag is clear
01010 C � Z ?? carry flag is set and zero flag is set
01011 /V overflow clear VC* overflow flag is clear
01100 N�V + /N�/V greater or

equal
GE* overflow and negative flags are the

same
01101 N�/V + /N�V less than LT* overflow and negative flags differ
01110 N�V�/Z + /N�/V�/Z greater than GT* not zero, and overflow and negative

flags are the same
01111 Z + N�/V + /N�V less or equal LE* zero, or overflow and negative flags

differ
10000 debug 1 self interrupt DSI* causes the GPU to interrupt itself on

interrupt 0, the jump is not taken
10001 debug 2 interrupt DCI* causes a CPU interrupt, the jump is not

taken
10010 debug 3 single step DSS* enters single step mode, the jump is not

taken
10011 debug 4 single step and

interrupt
DSSI* causes a CPU interrupt, enters single

step mode, the jump is not taken
10100 /N plus PL negative flag is clear
10101 /N � /Z ?? negative flag is clear and zero flag is

clear
10110 /N � Z ?? negative flag is clear and zero flag is set
10111 unused

11000 N minus MI negative flag is set
11001 N� /Z ?? negative flag is set and zero flag is clear
11010 N � Z ?? negative flag is set and zero flag is set
11011 unused
11100 debug 5 halt DHT* halts the processor (GO cleared), the

jump is not taken
11101 debug 6 halt and

interrupt
DHTI* causes a CPU interrupt, halts the

processor (GO cleared), the jump is not
taken

11110 unused
11111 0 false F jump never

* These codes are new to Midsummer, and require the enhanced mode flag to be set.

Help for Debugging

The best approach is not to write bugs in the first place. If you are not perfect, then the six debug codes
listed above in the conditional jump table allow you to both pause and stop the J-RISC processor, and
also to interrupt it and interrupt the CPU. This should allow a debugger to be written both to run on the
processor itself by interrupting itself, and to run on another processor, which will be more useful.

The J-RISC processor is also capable of single-stepping, as discussed below.

All these are special jump condition codes. They will work for JUMP or JR, and in all cases the jump is
not taken. The enhanced flag must be set for any of these to work. Because of pipe-lining effects the
instruction after the jump will usually get executed before the debug action is taken, e.g. the DSS code
will enter single-step mode after the next instruction has been executed (if it was already present in the
pre-fetch queue).

The six functions are as follows:

1. The processor interrupts itself on interrupt 0. This is effectively causing an exception, and may be
considered analogous to the 68000 illegal instruction.

2. An external CPU interrupt is generated. Execution will continue, so this is mostly useful for flagging
some condition.

3. The processor enters single-step mode, i.e. it suspends program execution, usually after the next
instruction, and waits for the SINGLE_GO command to continue. See the discussion on single
stepping. This is like a break-point.

4. This is the combination of functions 2 and 3, so that the processor suspends its execution into single-
step mode and interrupts the external CPU to advise it. This is a useful combination.

5. The processor stops itself. This effectively aborts operation.

6. The processor stops itself and generates an external CPU interrupt. This might be useful for trapping
the processor executing code that it should not be.

Single Step Operation

As an aid to the debugging of programs, you can set the J-RISC processor to single step through
programs, pausing between instructions until restarted. This operation is controlled by an external CPU as
follows:

1. Set up the program counter, then set the GPUGO and SINGLE_STEP control bits in the control
register.

2. Poll for the SINGLE_STOP flag in the status register - at this point the first instruction has been
executed.

3. Set the SINGLE_GO bit in the control register (keeping GPUGO and SINGLE_STEP set).

4. Poll for the SINGLE_STOP flag being set (this is the read version of the SINGLE_STEP flag), which
indicates that the next instruction has been executed.

5. Repeat from step 3.

Self Modifying Code

Self-modifying code carries implicit dangers, both for pre-fetch queues and for caches. This is because
the hardware may be maintaining two copies of the instructions, one in physical memory, and one in the
pre-fetch queue or cache. It is never safe to modify code that may be already cached, but this only

Page 24 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

applies to the RCPU. Many programmers believe that self-modifying code is inherently bad style, as it is
hard to understand and easy to get wrong. But for those of you who must, here are the rules.

It is possible to write self-modifying code for un-cached memory, as the only issue that arises is that the
instruction may already be fetched into the pre-fetch queue. The safest way to write self-modifying code
(RCPU: in memory that is not cached), and one which will guarantee portability, is to flush the pre-fetch
queue by performing a JUMP or JR before executing the modified code. This ensures that the instructions
are fetched from RAM, and all is consistent.

The amount of data in the pre-fetch queue at any moment can vary, and its fetch timing can be disturbed
if an external processor is accessing internal space, so it is highly dangerous to modify code a short
distance ahead of the current execution point and then linearly execute it. It is necessary to have a
distance of at least twelve instructions if you don’t wish to use JUMP or JR.
 MOVEI #t ar get , r 3
 STORE r 7, (r 3) ; modi f y t he code
 NOP ; 11 i nt er medi at e i nst r uct i ons
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
t ar get : ADD r 0, r 0 ; code t o be modi f i ed

Multiply and Accumulate Instructions

The J-RISC processor supports multiply and accumulate (MAC) operations. These involve multiplying two
values together, and adding their product to the sum of the products of some previous multiply operations.
These are typically used for matrix multiply and digital filtering type applications.

Due to the pipe-lined nature of the design, the multiply and its associated add do not take place in the
same clock cycle. MAC instructions are not therefore like other instructions, in that a special instruction is
needed to write back their result.

Take as an example multiplying R8 times R9, R10 times R11, R12 time R13, and placing the sum of their
products in R2. All values are signed. The instructions are as follows:
 i mul t n r 8, r 9 ; comput e t he f i r st pr oduct , i nt o t he r esul t
 i macn r 10, r 11 ; second pr oduct , added t o f i r st
 i macn r 12, r 13 ; t hi r d pr oduct , accumul at ed i n r esul t
 r esmac r 2 ; sum of pr oduct s i s wr i t t en t o r 2

MAC instructions may only be followed by further MAC instructions or by the RESMAC instruction. No
other combinations are permitted.

DSP only: When multiply and accumulate operations are performed, using the IMULTN, IMACN and
RESMAC instructions, or the MMULT instruction, the accumulated result is actually calculated
as a forty bit signed integer. The top eight bits are overflow bits, and they may be read in the
multiply/accumulate high result bits register (described later). However, their intended use is
with the SAT32S instruction, which takes as its forty bit input the register operand as the low
thirty-two bits and the eight overflow bits of the accumulator as its top eight bits, and saturates
the forty bit signed integer to thirty two bits; i.e. if it is less than FF80000000 it becomes
FF80000000 and if it is more than 007FFFFFFF it becomes 007FFFFFFF.

 The SAT32S instruction should therefore only be applied to the result of a multiply /
accumulate operation, and before any further multiply / accumulate operations are performed.
The SAT16S instruction operates only on its thirty-two bit register operand and takes no
account of the overflow bits.

Matrix Multiplies

The J-RISC processor contains a mechanism for performing integer matrix multiplies at a burst rate of the
maximum obtainable from the hardware multiplier, which is one multiply per clock cycle. This is generally
useful, but has been designed in particular for the matrix multiplies required by the Discrete Cosine
Transform algorithm. One technique for this involves performing two 8x8 integer matrix multiplies in
succession on a matrix, using the same fixed coefficients, but rotated for the second multiply.

The DCT operation cannot be performed efficiently using the multiply/accumulate mechanism described
above because each matrix contains sixty-four operands so that either one of them would occupy all the
registers!

The J-RISC processor therefore has a MMULT instruction, which initiates a sequence of between three
and fifteen multiply and accumulate instructions, as described above, corresponding to one product term
of the result matrix. One of the source matrices is held in the secondary register bank, the other in local
RAM. The matrix held in registers is packed, i.e. two elements per register, with the lower element in the
low bits. This allows all of an eight by eight matrix to be stored in the secondary register bank, and is the
raison d'être of the second bank..

A matrix multiply is initiated by the MMULT instruction. This takes as its source parameter the register,
which is always in the secondary register bank, containing the first two elements of the matrix row. Its
destination parameter is the register, in the currently selected register bank, in which to write the result.

The matrix held in RAM may be accessed in either increasing row or increasing column order, in other
words the data for each successive multiply operation are either one location apart for row access, or the
matrix width apart for column access.

Like interrupts, the matrix multiply operation is performed by forcing internally generated instructions into
the instruction stream. The first instruction is IMULTN, the middle ones IMACN, and the last RESMAC.
These have their operands modified in the manner described above.

The MMULT instruction must not be preceded by a LOAD or STORE instruction.

Divide Unit

The divide unit performs unsigned division, taking as operands a thirty-two bit divisor and dividend, giving
a thirty-two bit quotient and a thirty-two bit remainder. The quotient is the result of the divide instruction,
and replaces the dividend in the destination register. Divides are performed at the rate of two bits per
clock cycle, so that the complete divide operation completes in sixteen clock cycles. The divide instruction
has no effect on the flags.

If another instruction attempts to read the quotient or start another divide operation while the divide unit is
active, then the pipe-line will stall until the divide unit has completed. Otherwise, the divide unit has no
effect on instruction flow, as it runs in a completely separate ALU to all other arithmetic functions.

The remainder register may be read after the divide has completed, this value in this register may either
be positive, in which case it contains the actual remainder, or negative, in which case it contains the
remainder minus the divisor. The reason for this is that the divider performs non-restoring division at the
rate of two bits per clock cycle.

A simple binary division works thus:
 subt r ac t t he di vi sor f r om t he di vi dend
 i f t he r esul t i s posi t i ve
 shi f t 1 i nt o t he quot i ent
 el se
 shi f t 0 i nt o t he quot i ent
 add t he di vi sor back t o t he di vi dend (t he r est or e)
 shi f t t he di vi dend l ef t 1
 r epeat

As you can see this operation can involve two add/subtracts because of the restore. Non-restoring
division gets round this by omitting the restore, but performing an add instead of a subtract at the next
iteration. This is because when you do the restore you add the divisor, then at the next iteration you are
effectively subtracting half the divisor (because of the shift), the sum of which is the same as adding half
the divisor.

When the divide unit completes, the remainder register contains the un-restored dividend value, so it may
need the divisor added to it if it is negative, to give the true remainder..

Divides may also be performed on unsigned 16.16 bit values, by setting the offset control flag in the divide
control register. The quotient is then also an unsigned 16.16 bit value.

Register File

The J-RISC processor contains a register file of sixty-four thirty-two bit registers. All of them may be used
as general purpose registers, although some are also assigned special functions.

All instructions contain two five bit register operand fields, although they are not always used as such.
Where an instruction references a register, this five bit field is turned into the register address. There are
two banks of these 32 bit registers, primary and secondary. The primary register bank, bank 0, is always

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 25

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

used for interrupt service. This is forced by the IMASK bit: when it is set selection of bank 0 is forced. If
IMASK is clear REGPAGE is obeyed.

Bank select bits are provided in the flags register, and special MOVE instructions allow data to be moved
between banks.

External CPU Access

The internal address space is accessible to an external bus master at any time - external access having
the highest priority on the local bus. This means, for example, that the Blitter might read data from the
local RAM.

The local address space is accessible for read or write at the addresses given elsewhere in this
document, and these locations are presented as sixteen bit memory, which must always be accessed as
long words in the order low address then high address.

GPU only: To allow faster transfers into the GPU space, all the registers are also available as thirty-two
bit memory, at an offset of 8000 hex from their normal addresses. At this address, the internal
memory is write only.

 If the Blitter is being used to write into the GPU space, then phrase wide transfers may be
performed, as the bus control mechanism will automatically divide these up to suit the width of
the memory being addressed.

Pack and Unpack

GPU and RCPU only.

The pack and unpack instructions provide a means for averaging up to 32 CRY pixels. The unpack
operation leaves the intensity value unchanged, shifts the lower colour nibble up 5 bits, and the higher
colour nibble up 10 bits. It can also be operated with 16 bit RGB pixels in a similar manner by setting the
PACK_RGB control bit. The pack operation reverses this:

Register containing packed pixel

Register containing unpacked pixel

Colour field 1 Colour field 2 Intensity field

unpack

pack

Register containing packed pixel

Register containing unpacked pixel

Red field Blue field Green field

unpack

pack

CRY Pixels

RGB Pixels

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

There are five unused bits above each field in an unpacked pixel, allowing up to 32 unpacked pixels to be
added together. If a power of two unpacked pixel values are added, then a shift can be used to re-align
them prior to packing the average value.

The bits that do not contain packed or unpacked pixel data are always set to zero.

This is useful for anti-aliasing and scaling effects.

Instruction Set

The J-RISC processor instructions are all sixteen bits, made up as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode reg1 reg2
• op code defines the instruction to be executed
• reg2 is the destination operand, or the only operand of single operand instructions
• reg1 is the source operand

The reg2 and reg1 fields usually hold a register number, but have other meanings with some instructions.

The instruction set is as follows, where the syntax is

 <Op code name> <source>,<destination>

Note: The reg1 field of single operand instructions must always be set to zero for compatibility with
manufacturing test modes and future enhancements.

ABS Integer absolute value

Syntax ABS Rn

Processors all variants

Instruction No. 22

Description 32 bit integer absolute value. Has the same effect as NEG if the operand is negative,
otherwise does nothing. Note that this instruction does not work for value 8000000h,
which is left unchanged, and with the negative flag set.

Flags Z set if the result is zero
N cleared
C set if the operand was negative
V not defined

Encoding 010110 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

ADD Integer add

Syntax ADD Rn,Rn

Processors all variants

Instruction No. 0

Description 32 bit unsigned or two's complement signed integer add, the result is the destination
register contents added to the source register contents, and is written to the destination
register.

Flags Z set if the result is zero
N set if the result is negative
C represents carry out of the adder
V set if signed arithmetic overflow has occurred

Encoding 000000 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

Page 26 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

ADDC Add with carry

Syntax ADDC Rn,Rn

Processors all variants

Instruction No. 1

Description 32 bit unsigned or two’s complement integer add with carry in according to the
previous state of the carry flag, otherwise like ADD.

Flags Z set if the result is zero
N set if the result is negative
C represents carry out of the adder
V set if signed arithmetic overflow has occurred

Encoding 000001 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

ADDQ Add with quick data

Syntax ADDQ n,Rn

Processors all variants

Instruction No. 2

Description 32 bit unsigned or two’s complement integer add, where the source field is immediate
data in the range 1-32, otherwise like ADD.

Encoding 000010 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Flags Z set if the result is zero
N set if the result is negative
C represents carry out of the adder
V set if signed arithmetic overflow has occurred

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

ADDQMOD Add with quick data using modulo arithmetic

Syntax ADDQMOD n,Rn

Processors DSP

Instruction No. 63

Description 32 bit unsigned or two’s complement integer add, where the source field is immediate
data in the range 1-32, otherwise like ADD, except that the result bits may be
unmodified data if the corresponding modulo register bits are set. This allows circular
buffer management (for 2n size buffers), where the high bits of the modulo register are
set, and the low bits left clear.

Encoding 111111 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Flags Z set if the result is zero
N set if the result is negative

C represents carry out of the adder
V set if signed arithmetic overflow has occurred

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

ADDQT Add with quick data, transparent

Syntax ADDQT n,Rn

Processors all variants

Instruction No. 3

Description 32 bit unsigned or two’s complement integer add, like ADDQ except that it is
transparent to the flags, which retain their previous values.

Flags ZNCV unaffected

Encoding 000011 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write

AND Logical AND

Syntax AND Rn,Rn

Processors all variants

Instruction No. 9

Description 32 bit logical AND, the result is the Boolean AND of the source register contents and
the destination register contents, and is written back to the destination register.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 001001 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

BCLR Bit clear

Syntax BCLR n,Rn

Processors all variants

Instruction No. 15

Description Clear the bit in the destination register selected by the immediate data in the source
field, which is in the range 0-31. The other bits of the destination register are
unaffected.

Flags Z set if destination register is now all zero
N set from bit 31 of the result
C not defined
V not defined

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 27

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Encoding 001111 NNNNN DDDDD
NNNNN Bit select for the operation, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

BSET Bit set

Syntax BSET n,Rn

Processors all variants

Instruction No. 14

Description Set the bit in the destination register selected by the immediate data in the source field,
which is in the range 0-31. The other bits of the destination register are unaffected.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V reflects the state of the set bit before it was modified

Encoding 001110 NNNNN DDDDD
NNNNN Bit select for the operation, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

BTST Bit test

Syntax BTST n,Rn

Processors all variants

Instruction No. 13

Description Test the bit in the destination register selected by the immediate data in the source
field, which is in the range 0-31.

Flags Z set if the selected bit is zero
N not defined
C not defined
V not defined

Encoding 001101 NNNNN DDDDD
NNNNN Bit select for the operation, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Flags are valid

CMP Compare

Syntax CMP Rn,Rn

Processors all variants

Instruction No. 30

Description 32 bit compare, the source register contents are subtracted from the destination
register contents without the result being stored, but the flags reflect the result of the
comparison, which may therefore be used for equality testing and magnitude
comparison.

Flags Z set if the result is zero (operands equal)
N set if the result is negative (source greater than destination operand)
C represents borrow out of the subtract
V set if arithmetic overflow was generated by the subtract

Encoding 011110 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Flags are valid

CMPQ Compare with quick data

Syntax CMPQ n,Rn

Processors all variants

Instruction No. 31

Description 32 bit compare with immediate data in the range -16 to +15.

Flags Z set if the result is zero (operands equal)
N set if the result is negative (immediate data greater than destination
operand)
C represents borrow out of the subtract
V set if arithmetic overflow was generated by the subtract

Encoding 011111 NNNNN DDDDD
NNNNN Immediate data, -16 to +15, two’s complement value
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Flags are valid

DIV Unsigned divide

Syntax DIV Rn,Rn

Processors all variants

Instruction No. 21

Description The 32 bit unsigned integer dividend in the destination register is divided by the 32 bit
unsigned integer divisor in the source register, yielding a 32 bit unsigned integer
quotient as the result, like normal microprocessor division. The remainder is available,
and division may also be performed on 16.16 bit unsigned integers. Refer to the
section on arithmetic functions.

Flags ZNCV unaffected

Encoding 010101 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 18 Destination register write

IMACN Signed integer multiply/accumulate, no write-back

Syntax IMACN Rn,Rn

Processors all variants

Instruction No. 20

Page 28 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Description 16 bit signed integer multiply and accumulate, like IMULT, except that the 32 bit
product is added to the result of the previous arithmetic operation, and the result is not
written back to the destination register. Intended to be used after IMULTN to give a
multiply/accumulate group.

Flags ZNCV unaffected

Register Usage Cycle 1 Source register read & Destination register read

Encoding 010100 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Notes Refer to the section on Multiply and Accumulate instructions

IMULT Signed integer multiply

Syntax IMULT Rn,Rn

Processors all variants

Instruction No. 17

Description 16 bit signed integer multiply, the 32 bit result is the signed integer product of the
bottom 16 bits of each of the source and destination registers, and is written back to
the destination register.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 010001 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

IMULTN Signed integer multiply, no write-back

Syntax IMULTN Rn,Rn

Processors all variants

Instruction No. 18

Description Like IMULT, but result is not written back to destination register. Intended to be used
as the first of a multiply/accumulate group, as there are potential speed advantages in
not writing back the result.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 010010 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read

Notes Refer to the section on Multiply and Accumulate instructions

JR Jump relative

Syntax JR cc,n

Processors all variants

Instruction No. 53

Description Relative jump to the location given by the sum of the address of the next instruction
and the immediate data in the source field, which is signed and therefore in the range
+15 to -16 words. The condition codes encode as described above under conditional
jumps.

Flags ZNCV unaffected

Encoding 110101 NNNNN CCCCC
NNNNN Jump offset in words, -16 to 15, two’s complement value
CCCCC Condition code, described earlier

Register Usage Cycle 1 Flags must be valid

JRE Extended range jump relative

Syntax JRE n

Processors all variants

Instruction No. 57

Description Unconditional relative jump to the location given by the sum of the address of the next
instruction and the immediate data in the combined source and destination fields,
which is signed and therefore in the range +511 to -512 words. An offset of 0 is
decoded as NOP, however this op-code will always be treated as NOP unless the
enhanced bit is set (see NOP). The assembler should accept JR for this instruction
and encode it appropriately.

Flags ZNCV unaffected

Encoding 111001 NNNNNNNNNN
NNNNNNNNNN Jump offset in words, -512 to 511, two’s complement value

Register Usage none

JUMP Jump absolute

Syntax JUMP cc,(Rn)

Processors all variants

Instruction No. 52

Description Jump to location pointed to by the source register, destination field is the condition
code, where the bits encode as described above under conditional jumps.

Flags ZNCV unaffected

Encoding 110100 SSSSS CCCCC
SSSSS Source register number, 0-31
CCCCC Condition code, described earlier

Register Usage Cycle 1 Source register read and flags must be valid

LOAD Load long

Syntax LOAD (Rn),Rn

Processors all variants

Instruction No. 41

Description 32 bit memory read. The source register contains a 32 bit byte address, which must be
long-word aligned. The destination register will have the data loaded into it.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 29

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Flags ZNCV unaffected

Encoding 101001 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle n Destination register write internal memory at cycle 3 or 4
 external memory subject to bus latency

LOAD Load long, with indexed address

Syntax LOAD (R14+n),Rn
LOAD (R15+n),Rn

Processors all variants

Instruction No. 43, 44

Description 32 bit memory read, as LOAD, except that the address is given by the sum of either
R14 or R15 and the immediate data in the source register field, in the range 1-32. The
offset is in long words, not in bytes, therefore a divide by four should be used on any
label arithmetic to give the offset. This is slower than normal LOAD operations due to
the two clock cycle overhead of computing the address.

Flags ZNCV unaffected

Encoding 101011 NNNNN DDDDD
101100 NNNNN DDDDD
NNNNN Address offset in long words, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 R14 or R15 register read
Cycle n Destination register write internal memory at cycle 3 or 4
 external memory subject to bus latency

LOAD Load long, from register with base offset address

Syntax LOAD (R14+Rn),Rn
LOAD (R15+Rn),Rn

Processors all variants

Instruction No. 58, 59

Description 32 bit memory load from the byte address given by the sum of R14 and the source
register (the address should be on a long-word boundary). Otherwise like instructions
43 and 44.

Flags ZNCV unaffected

Encoding 111010 SSSSS DDDDD
111011 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 R14 or R15 register read & Source register read
Cycle n Destination register write internal memory at cycle 5 or 6
 external memory subject to bus latency

LOADB Load byte

Syntax LOADB (Rn),Rn

Processors all variants

Instruction No. 39

Description 8 bit memory read. The source register contains a 32 bit byte address. The destination
register will have the byte loaded into bits 0-7, the remainder of the register is set to
zero. This applies to external memory and some local RAM (refer to the discussion of
each J-RISC processor), all other internal memory will perform a 32 bit read.

Flags ZNCV unaffected

Encoding 100111 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle n Destination register write internal memory at cycle 5 or 6
 external memory subject to bus latency

LOADW Load word

Syntax LOADW (Rn),Rn

Processors all variants

Instruction No. 40

Description 16 bit memory read. The source register contains a 32 bit byte address, which must be
word aligned. The destination register will have the word loaded into bits 0-15, the
remainder of the register is set to zero. This applies to external memory and some
local RAM (refer to the discussion of each J-RISC processor), all other internal
memory will perform a 32 bit read.

Flags ZNCV unaffected

Encoding 101000 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle n Destination register write internal memory at cycle 3 or 4
 external memory subject to bus latency

LOADP Load phrase

Syntax LOADP (Rn),Rn

Processors GPU & RCPU

Instruction No. 42

Description 64 bit memory read. The source register contains a 32 bit byte address, which must be
phrase aligned. The destination register will have the low long-word loaded into it, the
high long-word is available in the high-half register. This applies to external memory
only, internal memory will perform a 32 bit read.

Flags ZNCV unaffected

Encoding 101010 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle n Destination register write, external memory subject to bus latency

MIRROR Mirror operand

Syntax MIRROR Rn

Processors DSP

Page 30 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Instruction No. 48

Description The register is mirrored bit-wise, i.e. bit 0 goes to bit 31, bit 1 to bit 30, bit 2 to bit 29
and so on. This is helpful for address generation in Fast Fourier Transform (FFT)
operations.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 110000 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

MMULT Matrix multiply

Syntax MMULT Rn,Rn

Processors all variants

Instruction No. 54

Description Start systolic matrix element multiply, the source register is the location of the register
source matrix, the product is written into the destination register. Refer to the section
on matrix multiplies. The flags reflect the final multiply/accumulate operation.

Flags Z set if the result is zero
N set if the result is negative
C represents carry out of the adder
V set if arithmetic overflow occurred

Encoding 110110 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Refer to the discussion of multiply/accumulate

MOVE Move register to register

Syntax MOVE Rn,Rn

Processors all variants

Instruction No. 34

Description 32 bit register to register transfer.

Flags ZNCV unaffected

Encoding 100010 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle 2 Destination register write

MOVE Move program count to register

Syntax MOVE PC,Rn

Processors all variants

Instruction No. 51

Description Load the destination register with the address of the current instruction. The actual
value read from the PC is modified to take into account the effects of pipe-lining and
prefetch, to give the correct address. This is the only way for the GPU to read its own
PC.

Flags ZNCV unaffected

Encoding 110011 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 2 Destination register write

MOVEFA Move from alternate register

Syntax MOVEFA Rn,Rn

Processors all variants

Instruction No. 37

Description 32 bit alternate register to register transfer, the source register lying in the other bank
of 32 registers.

Flags ZNCV unaffected

Encoding 100101 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle 2 Destination register write

MOVEI Move immediate

Syntax MOVEI n,Rn

Processors all variants

Instruction No. 38

Description 32 bit register load with next 32 bits of instruction stream. The first word in the
instruction stream is the low word, the second the high word. This instruction always
takes at least three clock cycles to complete, and is the sole exception to the 16 bit
instruction size. Note that the operand word ordering is little-endian.

Flags ZNCV unaffected

Encoding 100110 00000 DDDDD
NNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNN
DDDDD Destination register number, 0-31
NNNNNNNNNNNNNNNN Immediate data words as described above

Register Usage Cycle 4 Destination register write

MOVEQ Move quick data

Syntax MOVEQ n,Rn

Processors all variants

Instruction No. 35

Description 32 bit register load with immediate value in the range 0-31.

Flags ZNCV unaffected

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 31

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Encoding 100011 NNNNN DDDDD
NNNNN Immediate data, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 2 Destination register write

MOVETA Move to alternate register

Syntax MOVETA Rn,Rn

Processors all variants

Instruction No. 36

Description 32 bit register to alternate register transfer, the destination register lying in the other
bank of 32 registers.

Flags ZNCV unaffected

Encoding 100100 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle 2 Destination register write

MTOI Mantissa to integer

Syntax MTOI Rn,Rn

Processors all variants

Instruction No. 55

Description Extract the mantissa and sign from the IEEE 32 bit floating-point number in the source
register, and create a signed integer in the destination. The most significant bit is bit
23, but it is sign extended.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 110111 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle 3 Destination register write and flags are valid

MULT Multiply

Syntax MULT Rn,Rn

Processors all variants

Instruction No. 16

Description 16 bit unsigned integer multiply, the 32 bit result is the unsigned integer product of the
bottom 16 bits of each of the source and destination registers, and is written back to
the destination register.

Flags Z set if the result is zero
N set if bit 31 of the result is one
C not defined
V not defined

Encoding 010000 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

NEG Negate

Syntax NEG Rn

Processors all variants

Instruction No. 8

Description 32 bit two's complement negate, the result is the destination register contents
subtracted from zero, and is written back to the destination register. Note that
80000000h cannot be negated.

Flags Z set if the result is zero
N set if the result is negative
C represents borrow out of the subtract
V not defined

Encoding 001000 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

NOP Null Operation

Syntax NOP

Processors all variants

Instruction No. 57

Description Do nothing if the enhanced mode bit is set then this instruction can become
extended jump relative (JRE, see above). As long as the source and destination fields
are zero this is still decoded as NOP, and behaves exactly as before.

Flags ZNCV unaffected

Encoding 111001 0000000000

Register Usage none

NORMI Normalisation integer

Syntax NORMI Rn,Rn

Processors all variants

Instruction No. 56

Description Gives the floating point normalisation integer for the value in the source register, which
should be an unsigned integer. The normalisation integer is the amount by which the
source should be shifted right to normalise it as an IEEE 32 bit floating point value (the
normalisation integer can be negative), and is also the amount to be added to the
exponent to account for the normalisation.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Page 32 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Encoding 111000 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read
Cycle 3 Destination register write and flags are valid

NOT Logical NOT

Syntax NOT Rn

Processors all variants

Instruction No. 12

Description 32 bit logical invert, the result is the Boolean XOR of FFFFFFFF hex and the
destination register contents, and is written back to the destination register

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 001100 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

OR Logical OR

Syntax OR Rn,Rn

Processors all variants

Instruction No. 10

Description 32 bit logical or operation, the result is the Boolean OR of the source register contents
and the destination register contents, and is written back to the destination register.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 001010 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

PACK Pack 16 bit CRY or RGB Pixel

Syntax PACK Rn

Processors GPU and RCPU

Instruction No. 63

Description Takes an unpacked pixel value and packs it into a 16 bit CRY or RGB pixel. The three
fields, with five bit gaps between them are mapped onto the low sixteen bits, and the
top sixteen bits are set to zero. The reg1 field should be set to zero to differentiate this
from UNPACK;

Flags ZNCV unaffected

Encoding 111111 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write

Notes See the section on Pack and Unpack

RESMAC Multiply/accumulate result write

Syntax RESMAC Rn

Processors all variants

Instruction No. 19

Description Takes the current contents of the result register and writes them to the register
indicated. Intended to be used as the final instruction of a multiply/accumulate group.

Flags ZNCV unaffected

Encoding 010011 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 3 Destination register write

Notes Refer to the section on Multiply and Accumulate instructions

ROR Rotate right

Syntax ROR Rn,Rn

Processors all variants

Instruction No. 28

Description The value in the destination register is shifted right by the value in the source register
modulo thirty-two. This is effectively the same as a thirty-two bit rotate right by the
bottom five bits of the source register. You can use this instruction for rotate left by
complementing the value in the source register.

Flags Z set if the result is zero
N set if the result is negative
C represents bit 31 of the un-shifted data
V not defined

Encoding 011100 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

RORQ Rotate right by immediate count

Syntax RORQ n,Rn

Processors all variants

Instruction No. 29

Description Immediate data version of ROR. Shift count may be in the range 1-32

Flags Z set if the result is zero
N set if the result is negative
C represents bit 31 of the un-shifted data
V not defined

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 33

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Encoding 011101 NNNNN DDDDD
NNNNN Shift count, 1-32, where 32 encodes as 0, and has much the same effect
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SAT8 Saturate to eight bits

Syntax SAT8 Rn

Processors GPU & RCPU

Instruction No. 32

Description Saturate the 32 bit signed integer operand value to an 8 bit unsigned integer. If it is
negative it is set to zero, if it is greater than 000000FFh (255) it is set to that. This is
useful for computed intensities and so on, to counteract the effect of rounding errors.

Flags Z set if the result is zero
N cleared
C not defined
V not defined

Encoding 100000 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SAT16 Saturate to sixteen bits

Syntax SAT16 Rn

Processors GPU and RCPU

Instruction No. 33

Description Saturate the 32 bit signed integer operand value to a 16 bit unsigned integer. If it is
negative it is set to zero, if it is greater than 0000FFFFh (65,535) it is set to that. This is
useful for computed Z, et cetera, to counteract the effect of rounding errors.

Flags Z set if the result is zero
N cleared
C not defined
V not defined

Encoding 100001 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SAT16S Saturate to sixteen signed bits

Syntax SAT16S Rn

Processors DSP

Instruction No. 33

Description Saturate the 32 bit signed integer operand value to a 16 bit signed integer. If it is less
than FFFF8000h it is set to that, if it is greater than 00007FFFh it is set to that. This is
useful for computed audio sample values, and so on, to counteract the effect of
rounding errors.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 100001 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SAT24 Saturate to twenty-four bits

Syntax SAT24 Rn

Processors GPU and RCPU

Instruction No. 62

Description Saturate the 32 bit signed integer operand value to a 24 bit unsigned integer. If it is
negative it is set to zero, if it is greater than 00FFFFFFh (16,777,215) it is set to that.
This is particularly useful for computed intensities, to counteract the effect of rounding
errors.

Flags Z set if the result is zero
N cleared
C not defined
V not defined

Encoding 111110 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SAT32S Saturate RESMAC value to thirty-two bit signed

Syntax SAT32S Rn

Processors DSP

Instruction No. 42

Description Saturate the 40 bit signed integer operand value to an 32 bit signed integer. This uses
the overflow bits from multiply/accumulate operations as the top eight bits of the
source value. If the accumulated value is less than 80000000h it saturates to that, if it
is greater then 7FFFFFFFh it saturates to that.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Encoding 101010 00000 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SH Shift

Syntax SH Rn,Rn

Processors all variants

Instruction No. 23

Page 34 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Description This instruction performs a thirty-two bit shift either to the left or to the right as given by
the shift value in the source register. A positive shift value causes a shift to the right, a
negative shift value gives a shift to the left.
Shift values greater than plus thirty-two or less than minus thirty-two give a result of
zero as all the bits are shifted out. Zero is always shifted in, so you should use the SHA
instruction if you require sign-extension of values shifted to the right.

Flags Z set if the result is zero
N set if the result is negative
C represents bit 0 of the un-shifted data for right shift, or bit 31 for left shift
V not defined

Encoding 010111 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

SHA Shift arithmetic

Syntax SHA Rn,Rn

Processors all variants

Instruction No. 26

Description This instruction performs a thirty-two bit arithmetic shift either to the left or to the right
as given by the shift value in the source register. An arithmetic shift means that a shift
right is sign-extended, that is the value shifted in is the top bit of the value being
shifted.
A positive shift value causes a sign-extended shift to the right, a negative shift value
gives a normal shift to the left. Shift values greater than plus thirty-two give either zero
or minus one depending on the sign of the value being shifted, shift values of less than
minus thirty-two give a result of zero. You should use the SH instruction if you do not
require sign-extension of values.

Flags Z set if the result is zero
N set if the result is negative
C represents bit 0 of the un-shifted data for right shift, or bit 31 for left shift
V not defined

Encoding 011010 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

SHARQ Shift Arithmetic Right, with Immediate Shift Count

Syntax SHARQ n,Rn

Processors all variants

Instruction No. 27

Description As SHRQ but arithmetic shift right, i.e. sign shifted in. Best mnemonic.

Flags Z set if the result is zero
N set if the result is negative
C represents bit 0 of the un-shifted data
V not defined

Encoding 011011 NNNNN DDDDD
NNNNN Shift count, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SHLQ Shift left with immediate shift count

Syntax SHLQ n,Rn

Processors all variants

Instruction No. 24

Description 32 bit shift left by n positions, in the range 1-32. Otherwise like SH. (The shift value is
actually encoded as 32-n, this is handled by the assembler).

Flags Z set if the result is zero
N set if the result is negative
C represents bit 31 of the un-shifted data
V not defined

Encoding 011000 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SHRQ Shift right with immediate shift count

Syntax SHRQ n,Rn

Processors all variants

Instruction No. 25

Description As SHLQ but shift right, zero shifted in.

Flags Z set if the result is zero
N set if the result is negative
C represents bit 0 of the un-shifted data
V not defined

Encoding 011001 NNNNN DDDDD
NNNNN Immediate data, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

STORE Store long

Syntax STORE Rn,(Rn)

Processors all variants

Instruction No. 47

Description 32 bit memory write. The source register contains a 32 bit byte address, which must be
long-word aligned. The destination register contains the data to be written.
Note that for all store instructions, the notion of source and destination register fields is
the reverse of that used for all other instructions.

Flags ZNCV unaffected

Encoding 101111 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 35

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Register Usage Cycle 1 Source register read & Destination register read

STORE Store long, with indexed address

Syntax STORE Rn,(R14+n)
STORE Rn,(R15+n)

Processors all variants

Instruction No. 49, 50

Description 32 bit memory write, write as STORE, with address generation in the same manner as
the equivalent LOAD instructions. The destination register contains the data to be
written.

Flags ZNCV unaffected

Encoding 110001 SSSSS DDDDD
110010 SSSSS DDDDD
NNNNN Address offset in long words, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 R14 or R15 register read
Cycle 2 Source register read

STORE Store long, to register with base offset address

Syntax STORE Rn,(R14+Rn)
STORE Rn,(R15+Rn)

Processors all variants

Instruction No. 60, 61

Description 32 bit memory store to the byte address given by the sum of R14 and the destination
register (the address should be on a long-word boundary). Otherwise like instructions
49 and 50. The destination register contains the data to be written.

Flags ZNCV unaffected

Encoding 111100 SSSSS DDDDD
111101 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 R14 or R15 register read & Destination register read
Cycle 2 Source register read

STOREB Store byte

Syntax STOREB Rn,(Rn)

Processors all variants

Instruction No. 45

Description 8 bit memory write. The source register contains a 32 bit byte address. The destination
register has the byte to be written in bits 0-7. This applies to external memory and
some local RAM (refer to the discussion of each J-RISC processor), all other internal
memory will perform a 32 bit write.

Flags ZNCV unaffected

Encoding 101101 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read

STOREP Store phrase

Syntax STOREP Rn,(Rn)

Processors GPU and RCPU

Instruction No. 48

Description 64 bit memory write. The source register contains a 32 bit byte address, which must be
phrase aligned. The destination register contains the low long-word of the data to be
written, the high long-word is obtained from the high-half register. This applies to
external memory only, internal memory will perform a 32 bit write.

Flags ZNCV unaffected

Encoding 110000 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read

STOREW Store word

Syntax STOREW Rn,(Rn)

Processors all variants

Instruction No. 46

Description 16 bit memory write. The source register contains a 32 bit byte address, which must be
word aligned. The destination register has the word to be written in bits 0-15. This
applies to external memory and some local RAM (refer to the discussion of each J-
RISC processor), all other internal memory will perform a 32 bit write.

Flags ZNCV unaffected

Encoding 101110 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read

SUB Subtract

Syntax SUB Rn,Rn

Processors all variants

Instruction No. 4

Description 32 bit unsigned or two’s complement integer subtract, result is the source register
contents subtracted from the destination register contents, and is written to the
destination register. The carry flag represents borrow out of the subtract, and the zero
flag is set if the result is zero.

Flags Z set if the result is zero
N set if the result is negative
C represents borrow out of the subtract
V set if signed arithmetic overflow occurred

Encoding 000100 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

Page 36 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

SUBC Subtract with borrow

Syntax SUBC Rn,Rn

Processors all variants

Instruction No. 5

Description 32 bit unsigned or two’s complement integer subtract with borrow in according to the
carry flag, otherwise like SUB.

Flags Z set if the result is zero
N set if the result is negative
C represents borrow out of the subtract
V set if signed arithmetic overflow occurred

Encoding 000101 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

SUBQ Subtract with immediate data

Syntax SUBQ n,Rn

Processors all variants

Instruction No. 6

Description 32 bit two's complement integer subtract, where the source field is immediate data in
the range 1-32, otherwise like SUB.

Flags Z set if the result is zero
N set if the result is negative
C represents borrow out of the subtract
V set if signed arithmetic overflow occurred

Encoding 000110 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SUBQMOD Subtract with immediate data using modulo arithmetic

Syntax SUBQMOD n,Rn

Processors DSP

Instruction No. 32

Description 32 bit two's complement integer subtract, where the source field is immediate data in
the range 1-32, otherwise like SUB, except that the result bits may be unmodified data
if the corresponding modulo register bits are set. This allows circular buffer
management (for 2n size buffers), where the high bits of the modulo register are set,
and the low bits left clear.

Flags Z set if the result is zero
N set if the result is negative
C represents borrow out of the subtract
V set if signed arithmetic overflow occurred

Encoding 100000 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

SUBQT Subtract with immediate data, transparent

Syntax SUBQT n,Rn

Processors all variants

Instruction No. 7

Description 32 bit unsigned or two’s complement integer subtract, like SUBQ except that it is
transparent to the flags, which retain their previous values.

Flags ZNCV unaffected

Encoding 000111 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write

UNPACK Unpack 16 bit CRY or RGB Pixel

Syntax UNPACK Rn

Processors GPU and RCPU

Instruction No. 63

Description Takes a packed CRY or RGB 16 bit pixel value and unpacks it into a 32 bit integer.
The three fields are spread out with five bit gaps between them, and all other bits are
set to zero. The reg1 field should be set to one to differentiate this from PACK.

Flags ZNCV unaffected

Encoding 111111 00001 DDDDD
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write

Notes See the section on Pack and Unpack

XOR Logical exclusive OR

Syntax XOR Rn,Rn

Processors all variants

Instruction No. 11

Description 32 bit logical exclusive or, the result is the Boolean XOR of the source register
contents and the destination register contents, and is written back to the destination
register.

Flags Z set if the result is zero
N set if the result is negative
C not defined
V not defined

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 37

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Encoding 001011 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

Writing Fast J-RISC Programs

To get the most out of the J-RISC processor, it is important to avoid what are traditionally known as wait
states, but in a RISC context are usually called pipe-line stalls or just stalls. These are when the
instruction pipe-line has to pause until some system resource becomes available, and are generally to
control the use of limited hardware resources; or to protect the programmer from some out-of-order effect,
such as using a register before it is valid as the result of some previous operation.

The processor can execute one instruction per clock cycle in ideal circumstances, but it is very easy for
code to be subject to so many stalls that it only achieves around half this figure. It will be worthwhile for
programmers to tune the innermost loops of their code for maximum performance, and the rules given
here should help do that. A well written program can usually achieve an instruction throughput of around
three-quarters of the peak figure.

Pipe-line stalls usually occur either because an instruction would otherwise use some system resource,
such as a register or a flag, which is not valid; or it would use a piece of hardware that is currently fully
occupied, or active from an earlier operation, such as the external memory interface. This is because the
processor makes significant use of pipe-lining to improve performance.

The register bank is a source of stalls because it has only two read/write ports, so that two reads, a read
and a write, or two writes can occur in any given clock cycle. If a result is being written at the same time
as an instruction that requires two reads, then a stall will occur unless the write register matches one of
the two read registers, in which case the write occurs and the write data is provided as if the read was
taking place. The instruction set list shows the register usage of all instructions.

Instructions dependant on the flags can also be subject to stalls, the flags are not valid until the clock
cycle in which the result is written back, so that if a ADD instruction is followed by a JUMP then a one
clock cycle stall will ensue, the JUMP executing in the clock cycle in which the result of the ADD is written
back.

Pipe-line stalls are incurred when:

• an instruction reads a register containing the result of the previous instruction, one clock cycle of
wait is incurred until the previous operation completes.

• an instruction uses the flags from the previous instruction, one clock cycle of wait is incurred until
the previous operation completes.

• an ALU result, memory load value or divide result has to be written back and neither register
operand of the instruction about to be executed matches, one clock cycle of wait is incurred to let
the data be written.

• two values are to be written back at once, one clock cycle of wait is incurred (this is unusual).

• an instruction attempts to use the result of a divide instruction before it is ready. Wait states are
inserted until the divide unit completes the divide, between one and sixteen wait states can be
incurred.

• a divide instruction is about to be executed and the previous one has not completed, between one
and sixteen wait states can be incurred.

• an instruction reads a register which is awaiting data from an incomplete memory read, this will be
no more than one clock cycle from internal memory, but can be several clock cycles from external
memory.

• a load or store instruction is about to be executed and the memory interface has not completed the
external bus cycle for the a previous external load or store (the wait logic cannot determine if the
transfer is internal or external before the instruction executes, so all loads and stores are held up if
there is an external transfer incomplete).

• after a store instruction with an indexed addressing mode (one clock cycle).

• after a JUMP or JR (three clock cycles if executing out of internal memory).

• if the next instruction has not been read, this will only occur when executing out of external memory.

• during a matrix multiply if the CPU accesses internal space.

The most common cause of pipe-line stalls is using a register which was altered by the previous
instruction. For example consider this code fragment:
1 add r 3, r 0 ; add of f set t o X
2 shr q 1, r 0 ; appl y scal i ng f act or
3 add r 0, r 4 ; add t o base
4 add r 5, r 1 ; add of f set t o Y
5 shr q 1, r 1 ; appl y scal i ng f act or
6 add r 1, r 6 ; add t o base

Stalls will be incurred after instructions 1, 2, 4 and 5. If the code were laid out like this:
1 add r 3, r 0 ; add of f set t o X
2 add r 5, r 1 ; add of f set t o Y
3 shr q 1, r 0 ; appl y scal i ng f act or
4 shr q 1, r 1 ; appl y scal i ng f act or
5 add r 0, r 4 ; add t o base
6 add r 1, r 6 ; add t o base

No stalls would occur. This is an example if interleaving, and this is a powerful technique for speeding up
your code. It is well worth the performance enhancement - 6 clock cycles instead of 10 in this example - to
ensure that your code is laid out like this. Obviously there is a considerable overhead in thinking this out,
but for loops that are executed many times it is well worth doing.

Graphics Processor - GPU

The Oberon Graphics Processor Subsystem contains one Jaguar RISC processor as described above
(this one is known as the GPU Graphics Processing Unit) and the blitter, whose control registers are in
the GPU internal memory space. The GPU is a self-contained processing unit which runs in parallel with
the rest of the system, but which is able to access the main system bus. External memory is controlled by
a separate memory controller, which is not part the graphics processor system.

The graphics subsystem transfers data to or from external memory by becoming the master of the co-
processor bus. This bus has a 64 bit (phrase) data path, and a 24 bit address, with byte resolution. This
bus has multiple masters, and ownership of it is gained by a bus request/acknowledge system, which is
prioritised, i.e. ownership can be lost during a request (but not during a memory cycle). The graphics
subsystem contains two bus masters, the Graphics Processor and the Blitter.

The graphics subsystem also acts as a slave on the IO bus. This bus normally has a 16 bit data path, and
allows external processors to access memory and registers within the graphics subsystem. As the data
path within the graphics subsystem is 32 bit, all external reads and writes must be in pairs.

The memory within the Graphics Subsystem appears to be part of the general machine address space,
both to the GPU and Blitter, and to external processors. The advantage to the GPU of having local
memory is both that it is faster, and that it does not require ownership of the system bus to be accessed.
All GPU transfers in the local space, to both memory and registers, can occur in parallel with activity on
the main (external) bus, and are therefore efficient in terms of system use.

This diagram shows the architecture and data paths of the graphics subsystem:

Page 38 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Instruction
Execution
Unit

Dual-port 32-bit

Register File

ALU Block

GPU Bus Controller

CPU access to GPU

Local RAM

1K x 32

Blitter Registers

Blitter Control LogicGPU Gateway

to main bus

64-bit data Coprocessor bus
Bus Master Transfers

16/32-bit data IO Bus
Bus Slave Transfers

Blitter texture memory
2K x 32 RAM

32-bit data Local BUS

2K x 32 ROM

bus master

The three blocks at the lower right form the blitter. The control interface of the blitter is completely within
the GPU space, but the blitter is an independent bus master to the GPU, i.e. it will start up and perform a
blit completely independently from the GPU. The blitter texture memory is available to the GPU as 32 bit
RAM (only long transfers are available), and may be used as general GPU RAM when not being used for
texture mapping. If texture operation is restricted to one 1K x 32 bank of this RAM, then the GPU may
access the other 1K x 32 bank without affecting blitter performance.

Memory Map

The Graphics sub-system address space contains the following locations:

Addr. Name r/w Description
F02000 GPU_REGS RW GPU registers, sixty-four 32 bit locations
F02100 GPU_FLAGS RW GPU flags
F02104 GPU_MTXC W GPU matrix control
F02108 GPU_MTXA W GPU matrix address
F0210C GPU_BIGEND W GPU big / little endian control
F02110 GPU_PC RW GPU program counter
F02114 GPU_CTRL RW GPU operation control / status
F02118 GPU_HIDATA RW GPU bus interface high data
F0211C GPU_REMAIN R GPU division remainder
F02120 GPU_DMACNT W GPU DMA transfer count
F02124 GPU_DMACTL W GPU DMA control register
F02124 GPU_DMASTAT R GPU DMA status
F02128 GPU_DMAEA W GPU DMA external address
F0212C GPU_DMAIA W GPU DMA internal address
F02200 A1_BASE W Blitter A1 base
F02204 A1_FLAGS W Blitter A1 flags
F02208 A1_CLIP W Blitter A1 window size
F0220C A1_PIXEL RW Blitter A1 pointer
F02210 A1_STEP W Blitter A1 step
F02214 A1_FSTEP W Blitter A1 step fraction
F02218 A1_FPIXEL RW Blitter A1 pointer fraction
F0221C A1_INC W Blitter A1 pointer increment

F02220 A1_FINC W Blitter A1 pointer increment fraction
F02224 A2_BASE W Blitter A2 base
F02228 A2_FLAGS W Blitter A2 flags
F0222C A2_MASK W Blitter A2 mask
F02230 A2_PIXEL RW Blitter A2 pointer
F02234 A2_STEP W Blitter A2 step
F02238 BLIT_CMD W Blitter command
F0223C BLIT_COUNT W Blitter loop counters
F02240 BLIT_SRCD W Blitter source data
F02248 BLIT_DSTD W Blitter destination data
F02250 BLIT_DSTZ W Blitter destination Z data
F02258 BLIT_SRCZ1 W Blitter source Z data 1
F02260 BLIT_SRCZ2 W Blitter source Z data 2
F02268 BLIT_PATD W Blitter pattern data
F02270 BLIT_IINC W Blitter intensity increment
F02274 BLIT_ZINC W Blitter Z increment
F02278 BLIT_STOP W Blitter collision stop control
F0227C BLIT_I0 W Blitter intensity register 0
F02280 BLIT_I1 W Blitter intensity register 1
F02284 BLIT_I2 W Blitter intensity register 2
F02288 BLIT_I3 W Blitter intensity register 3
F0228C BLIT_Z0 W Blitter Z register 0
F02290 BLIT_Z1 W Blitter Z register 1
F02294 BLIT_Z2 W Blitter Z register 2
F02298 BLIT_Z3 W Blitter Z register 3
F0229C BLIT_FINNER W Fractional part of the inner counter and extended command
F022A0 BLIT_IDELTA W Inner counter initial value delta
F022A4 A1_XSD W A1 X step delta value
F022A8 A1_YSD W A1 Y step delta value
F022AC BLIT_ISTEP W Intensity step value
F022B0 BLIT_ISD W Intensity step value delta
F022B4 BLIT_ZSTEP W Z step value
F022B8 BLIT_ZSD W Z step value delta.
F022BC BLIT_X0 W Texture X address pointer 0
F022C0 BLIT_X1 W Texture X address pointer 1
F022C4 BLIT_X2 W Texture X address pointer 2
F022C8 BLIT_X3 W Texture X address pointer 3
F022CC BLIT_Y0 W Texture Y address pointer 0
F022D0 BLIT_Y1 W Texture Y address pointer 1
F022D4 BLIT_Y2 W Texture Y address pointer 2
F022D8 BLIT_Y3 W Texture Y address pointer 3
F022DC BLIT_XINC W Texture X inner loop increment
F022E0 BLIT_XSTEP W Texture X outer loop step
F022E4 BLIT_XSD W Texture X outer loop step delta
F022E8 BLIT_YINC W Texture Y inner loop increment
F022EC BLIT_YSTEP W Texture Y outer loop step
F022F0 BLIT_YSD W Texture Y outer loop step delta
F022F4 BLIT_TBASE W Texture base address
F022F8 BLIT_IINCX W Alternate intensity increment register
F022FC A1_MASK W A1 window address mask.
F02300 A2_CLIP W A2 clipping window size
F02304 A1_X W Alternate view of the A1 X pixel pointer and its fractional part
F02308 A1_Y W Alternate view of the A1 Y pixel pointer and its fractional part
F0230C A2_X W Alternate view of A2 X pixel pointer
F02310 A2_Y W Alternate view of A2 Y pixel pointer
F02314 A1_XSTEP W Alternate view of the A1 X step pixel pointer and its fraction
F02318 A1_YSTEP W Alternate view of the A1 Y step pixel pointer and its fraction
F0231C BLIT_COLOR W Background color and data path control
F02320 BLIT_TXTD W The texture data registers
F02400 BLIT_TCLUT W Blitter texture CLUT - 16 words packed into 8 longs
F03000 GPU_RAM RW GPU local program and data RAM base, 1024 x 32 bits

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 39

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

F04000 TXT_RAM RW Blitter texture RAM, 2048 x 32 bits
F06000 TXT_ROM RW Blitter texture ROM, 2048 x 32 bits

To the GPU all these addresses appear as 32 bit locations, and all transfers to them should be long
transfers. The only exception to this is the block of 4K bytes of RAM at F03000 (but not the texture RAM),
to which the GPU can perform byte and word transfers.

These locations may be accessed by all other processors for read or write as appropriate at the above
addresses, via the GPU slave access port, where they appear to the system as 16 bit IO space memory.
As they are all actually 32 bits, transfers must always be performed in pairs, in the order low address then
high address.

In addition, for high-speed write operations by 32 bit or 64 bit bus masters (especially for blit transfers),
they may be written to as 32 bit locations at an offset of plus 8000 hex from the addresses above. They
are not readable at these addresses. They are not accessible to the GPU itself at the plus 8000 hex
offset.

Internal Registers

This section describes the internal registers of the Graphics processor. Note that some of these are read
or write only.

All GPU registers are 32 bit, and will require all 32 bits to be written.

GPU Flags Register F02100 Read/Write

This register provides status and control bit for several important GPU functions. Control bits are:

Bit Name Description
0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic operation

was zero. Certain arithmetic instructions do not affect the flags,
see above.

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borrow out of the
adder/subtract, and reflects carry out of some shift operations,
but it is not defined after other arithmetic operations.

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic
operation was negative.

3 IMASK Interrupt mask, set by the interrupt control logic at the start of the
service routine, and is cleared by the interrupt service routine
writing a 0. Writing a 1 to this location has no effect.

4-8 INT_ENA0-4 Interrupt enable bits for interrupts 0-4. The status of these bits is
overridden by IMASK. Interrupts are allocated as follows:
4 Blitter
3 Object Processor
2 Timing generator
1 DSP interrupt, the interrupt output from Puck
0 CPU interrupt

9-13 INT_CLR0-4 Interrupt latch clear bits. These bits are used to clear the interrupt
latches, which may be read from the status register. Writing a
zero to any of these bits leaves it unchanged, and the read value
is always zero.

14 REGPAGE Switches from register bank 0 to register bank 1. This function is
overridden by the IMASK flag, which forces register bank 0 to be
used.

15 DMAEN When DMAEN is set, GPU LOAD and STORE instructions
perform external memory transfers at DMA priority, rather than
GPU priority. This has no effect on program data fetches, which
continue at GPU priority.
This bit must not be changed while an external memory cycle is
active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it
in an interrupt service routine.

16 OVERFLOW_FLAG The ALU overflow flag, which is meaningful for two types of
operation: either it means the last add or subtract operation was
not representable for signed arithmetic, or it represents the state
of the bit set or cleared by the last bit set or clear operation
before the bit was set or cleared. Signed arithmetic overflow
occurs when:
• the sum of two positive numbers gives a negative result
• the sum of two negative numbers gives a positive result
• a negative number is subtracted from a positive number and

gives a negative result
• a positive number is subtracted from a negative number and

gives a positive result
Note that this bit appears in bit 18 of the RCPU and DSP.

WARNING - when you write a value to this register, it may not appear to have changed in the following
two instructions, because of pipe-lining effects. If you are going to use the flags set by a STORE
instruction, or are changing one of the other bits such as the register bank, then ensure that there are two
NOPs after the STORE to this register.

Matrix Control Register F02104 Write only

This register controls the function of the MMULT instruction. Control bits are:

Bit Name Description
0-3 MWIDTH Matrix width, in the range 3 to 15
4 MADDW When set, successive reads of the matrix held in memory are

separated by the matrix width. When clear, reads are from
consecutive locations.

Matrix Address Register F02108 Write only

This register determines where, in local RAM, the matrix held in memory is.

Bit Name Description
2-11 MTXADDR Matrix address.

Data Organisation Register F0210C Write only

This register controls the physical layout of pixel data and GPU I/O registers. If its current contents are
unknown, the same data should be written to both the low and high 16 bits.

Bit Name Description
0 BIG_IO When this bit is set, 32 bit registers in the CPU I/O space are big-

endian, i.e. the more significant 16 bits appear at the lower
address.

1 BIG_PIX When this bit is set the pixel organisation is big-endian. See the
discussion elsewhere in this document.

2 BIG_INSTR Normally, instructions are executed from a long-word in the order
low word then high word. When this bit is set the execution
ordering is reversed, i.e. high word then low word. However,
move immediate data remains little-endian, i.e. the data must
always be in the order low word then high word in the instruction
stream.

3 BIG_TROUBLE Under no circumstances set this bit. Data will be swapped in
unlikely ways just when you least expect it. Let me tell you what I
think of big-endian organisation (continued on page 396)...

GPU Program Counter F02110 Read/Write

The GPU program counter may be written whenever the GPU is idle (GPUGO is clear). This is normally
used by the CPU to govern where program execution will start when the GPUGO bit is set.

Page 40 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

The GPU program counter may be read at any time, and will give the address of the instruction currently
being executed. If the GPU reads it, this must be performed by the MOVE PC,Rn instruction, and not by
performing a load from it.

The GPU program counter must always be written to before setting the GPUGO control bit. When the
GPUGO bit is cleared, the program counter value will be corrupted, as at this point the pre-fetch queue is
discarded.

GPU Control/Status Register F02114 Read/Write

This register governs the interface between the CPU and the GPU.

Bit Name Description
0 GPUGO This bit stops and starts the processor. Any processor may write

to this register to start it, however only the processor controlled
by this bit may clear it (unless single-stepping is enabled).

1 CPUINT Writing a 1 to this bit allows the GPU to interrupt the CPU. There
is no need for any acknowledge, and no need to clear the bit to
zero. Writing a zero has no effect. A value of zero is always read.

2 GPUINT0 Writing a 1 to this bit causes a GPU interrupt type 0. There is no
need for any acknowledge, and no need to clear the bit to zero.
Writing a zero has no effect. A value of zero is always read.

3 SINGLE_STEP When this bit is set GPU single-stepping is enabled. This means
that program execution will pause after each instruction, until a
SINGLE_GO command is issued.
The read status of this flag, SINGLE_STOP, indicates whether
the GPU has actually stopped, and should be polled before
issuing a further single step command. A one means the GPU is
awaiting a SINGLE_GO command.

4 SINGLE_GO Writing a one to this bit advances program execution by one
instruction when execution is paused in single-step mode.
Neither writing to this bit at any other time, nor writing a zero, will
have any effect. Zero is always read.

5 unused Write zero.
6-10 INT_LAT0-4 Interrupt latches. The status of these bits indicate which interrupt

request latch is currently active, and the appropriate bit should be
cleared by the interrupt service routine, using the INT_CLR bits in
the flags register. Writing to these bits has no effect.

11 BUS_HOG When the GPU is executing code out of external RAM it will
normally give up the bus between program fetches, which should
allow the CPU to continue to run at the same time. Setting this bit
causes the GPU to attempt to hold on to the bus between
program fetches, which improves its execution speed, at the
expense of any lower priority device using the bus.

12-15 VERSION These bits allow the GPU version code to be read. Current
version codes are:
1 Pre-production test silicon (Jaguar One)
2 First production release (Jaguar One)
3 Pre-production test silicon (Midsummer)
Future variants of the GPU may contain additional features or
enhancements, and this value allows software to remain
compatible with all versions. It is intended that future versions will
be a superset of this GPU.

16 ENHANCED The bit has to be set to enable some of the enhanced
functionality of Oberon. The following functions are enabled when
this bit is set:
• additional condition codes are available to the JUMP and JR

instructions
• the JRE op-code is enabled, using NOP with non-zero

register number fields.
• The bug related to two consecutive divides is fixed

17 SCORE_WRITE When this bit is set, score-board protection is enabled for register
writes. This means that if a slow write to a register, such as
external load or divide, is followed by a fast write to a register,
such as register move, that the writes will be executed in the
correct order. This bit should normally always be set, but may be
cleared for strict compatibility with Jaguar One.

18 PACK_RGB When this bit is set the pack and unpack instructions operate on
16 bit RGB data instead of CRY data.

19 RESET Writing a one to this bits aborts all GPU operation instantly.
Everything is cleared down to its power on state, execution halts,
the GPU stops completely, and the processor sub-system must
be re-initialised from scratch. This bit is very powerful. Writing a
zero has no effect.
This bit must never be set in normal operation. It can have
catastrophic side effects on other processors, and is only
provided as a last resort for fatal situations.

High Data Register F02118 Read/Write

This 32 bit register provides the high part of GPU phrase reads and writes. It is physically a single
register, and therefore a phrase read followed by a phrase write will write back the same high data unless
this register is modified.

Divide unit remainder F0211C Read only

This 32 bit register contains a value from which the remainder after a division may be calculated. Refer to
the section on the Divide Unit.

Divide unit Control F0211C Write only

Bit Name Description
0 DIV_OFFSET If this bit is set, then the divide unit performs division of unsigned

16.16 bit numbers, otherwise 32 bit unsigned integer division is
performed.

GPU DMA Length Counter F02120 Write only

Writing to this counter sets up the length of the transfer and initiates it. The length is written in bytes but
must be a whole number of phrases, and the allowable range of values is between 8 (one phrase) and
32760 / 7FF8 hex. Only the GPU is allowed to write to this register if the GPU is running.

GPU DMA Control F02124 Write only

This register controls various aspects of the DMA transfer. It is static.

Bit Name Description
0 DMA_OUT Controls the direction of the DMA transfer. When set transfer is

from internal to external memory.
1 DMA_DMA When this bit is set the transfer occurs at the high GPU bus

priority level (DMA level), when clear the transfer occurs at the
normal GPU priority level.

GPU DMA External Address F02128 Write only

This register gives the phrase aligned address of external DMA data. It is a counter, and so must be
written before each DMA transfer. It wraps within a 4 Mbyte window. It must not be set to an address
within the GPU internal space, this will not work reliably, and may cause unpredictable system
crashes.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 41

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

GPU DMA Internal Address F0212C Write only

This register gives the long aligned address of internal DMA data, it is also a counter like the external
address and so must be written to before each transfer. Valid addresses are in the range F02000 to
F05FFC.

GPU DMA Status F02124 Read only

This read port allows the status of the DMA controller to be examined. This register is all zero when the
DMA transfer is complete, and this condition should be polled for. Bits are assigned as follows:

Bit Name Description
0 OCYCLE There is a cycle active on the external bus
1 OCYCLERD The read transfer part of an external cycle is active.
2 DMA_PEND There is a DMA transfer pending.
3-15 DMA_COUNT These correspond to the same bits in the DMA length counter,

which counts down as each phrase is transferred.
16-31 unused Will be zero when the DMA is finished.

RISC Central Processor - RCPU

The RISC Central Processor is a Jaguar J-RISC processor intended to act as the CPU for the system, in
other words it should be the highest level of program flow in Midsummer. It replaces the function of the
68000 in Jaguar One, and gives considerably more processing power to the role. It is truly the central
processor of the system because of its power, the 68000 did not fill that function.

The system is still booted by the 68000, but once running it is intended that the RCPU takes over system
management.

The RCPU is intended to be the processor of choice for running code compiled in C, and it should be
possible to provide C libraries which largely hide the multiple processor nature of the system.

Cache Controller

Overview

The RCPU contains an instruction cache, which can dramatically improve the speed of execution and
reduce the main bus usage of RCPU programs running from external memory. It works by automatically
storing instructions in fast local RAM as they are executed, so that when they are executed again they can
be fetched immediately from that RAM without waiting for, or slowing down, the external bus. This
benefits programs which contain loops (most programs!), as the second and subsequent passes through
the loop will be executed entirely from cache.

If the instruction cache controller is disabled the cache instead appears as two banks of local RAM
(detailed in the Memory Map section below) which can be used for general program or data storage.

The RCPU also contains a simple mechanism to help with stack operations. This allows the top 512 bytes
of data RAM to also be used as a rolling overlay for external RAM, so that the top of the stack can be held
in internal memory without severely restricting the stack size. This is not strictly a cache, as it relies on
software to copy data in and out of it, but it does allow significant enhancements in stack transfer
performance in certain circumstances. This is described in greater detail in the “RCPU Stack Cache Base
Pointer” section on page.8

What is a Cache?

A cache is a mechanism to store a copy of parts of slow external memory in fast local memory. It retains a
copy of data that is read from external memory, so that if that data is read again then the local copy can
be used, saving the time required to fetch it again from the slower memory. In the RCPU the cache stores
only program instruction data. Programs are a good candidate for caching as they usually contain loops.

A cache controller contains two blocks of RAM, called tag RAM and data RAM. The data RAM contains
the data that is being cached. In the RCPU these are instructions. The tag RAM identifies where in
external memory the data held in the data RAM comes from. To keep tag RAM small, the data RAM is
divided into lines, where each line has one tag entry. A line holds up to 16 instructions (that is 32 bytes or
4 phrases), and these always correspond to 32 consecutive bytes in external memory, on a 32 byte
boundary.

Although it would be nice if any line could correspond to any area in memory, this would require the
hardware to check all the tags to determine if there is a cache hit (a hit is when the data being fetched is
in the cache). The simplest solution to this is a direct mapped cache, where any location in external
memory can only be held in one cache location, so that any address only has to be compared against one
tag to see if the correct data is cached. A direct mapped cache has a problem if a loop is jumping back
and forth between two locations that correspond to the same cache line (this is known as thrashing),
because each will keep over-writing the other, and the stored cache data is never re-used. Therefore the
cache in the RCPU is two-way set associative. This means that any location in external memory can
map onto one of two locations in the data RAM. This means that two tags have to be checked to see if
there is a match. If either one of them matches, the cache returns the appropriate data to the instruction
fetch unit. This is a reasonable overhead.

The next issue to consider is how the data is written into the cache. When a cache miss occurs, the
cache unit will go and fetch an entire line from main memory. If one of the two locations on the data RAM
where this data could be stored is empty, than the line is placed there. However, if both of them are filled,
then the cache has a decision to make what should it throw away? The usual answer is to throw away

Page 42 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

the least recently filled line. This is normally a good solution, although it can clearly go wrong in the case
where three locations that map to the same lines are being cycled through. The RCPU cache supports
two algorithms: first in first out (FIFO), where the data that has been in the cache longest is discarded;
and random, where the data that is discarded is chosen randomly. You may want to experiment to see
which gives you better performance.

Cache Basics

Clearing the ENABLE_CACHE bit in the RCPU Cache Control register disables the cache, making the
memory regions RCPU_PRAM and RCPU_TRAM available as regular 32-bit memory. Setting this bit
allows these regions to be used by the cache controller, making them inaccessible to the programmer
(reading from this region with return indeterminate values, writing will have no effect).

When enabled, the controller uses RCPU_PRAM to store instructions, and RCPU_TRAM to remember
where they came from and if they are valid.

RCPU_TRAM will contain random data after reset, and must be cleared before the cache is enabled, so
that the controller knows that RCPU_PRAM doesn’t contain any valid instructions.

In fact, the cache must be cleared on the following occasions:

1) Before the cache is enabled

2) After modifying code that could be cached, e.g. after :
 a) Loading code from ROM or CDROM
 b) Moving code
 c) Self-modifying code

To clear the cache:

1) Clear the ENABLE_CACHE bit (making RCPU_TRAM accessible to you)

2) Fill the 64 longs in RCPU_TRAM with 0 (The DMA mechanism is the fastest way of doing this)

If this is the first clear after reset, the cache “ignore” range registers CACHE_ILWR, CACHE_IUPR must
be initialised. Any instruction fetched from the region:

 CACHE_ILWR <= address < CACHE_IUPR

will not be cached. To disable this region, just set CACHE_ILWR=CACHE_IUPR.

Now that the cache has been cleared, it can be enabled by setting the ENABLE_CACHE bit.

All subsequent RCPU instruction fetches will be cached (except those from RCPU_RAM, which doesn’t
need caching, and those within the ‘ignore’ area).

The CACHE_HIGH bit can be set at any time to increase the bus arbitration priority of cache fetches.

The next few sections explain in detail how the cache works. Although you can use the cache without this
detailed understanding, it will help you achieve maximum performance.

RCPU_CACHECTRL F18130 RW

Bit Name Description
0 ENABLE Clear to disable cache controller, allowing RCPU_PRAM and

RCPU_TRAM to be used as general-purpose RAM.
Set to enable cache controller, which uses these RAMs for storage.
Cache controller’s internal ‘enable’ state cannot change during a
pending request or cache burst - this bit can be read to determine
the internal state.

1 EN_IMMED When cache is disabled, this has no effect.
When cache is enabled, set to allow ‘immediate’ cache burst hits.
(Explained under ‘Cache Performance’ below)
Do NOT change this bit ‘on the fly’.
It will normally be set ‘TRUE’ at start-up then left unchanged.

2 EN_LINE Similar to EN_IMMED, but enables ‘line’ cache burst hits.
3 HIPRI When set, cache fetches are performed at DMA priority.
4 RANDOM Determines line-replacement algorithm on cache-misses. Clear for

FIFO, set for RANDOM.
5 BUS_HOLD If this bit is set, then the 68000 can never have the bus at its normal

priority. This will significantly enhance cache performance when the
system is idle as the bus latency will be substantially reduced. Other
bus masters will also benefit. However, this prevents the 68000 from
running anything except interrupt service routines.

5-31 unused Write zero.

RCPU_CACHEILO F18134 WO

RCPU_CACHEIHI F18138 WO

These registers define a region of memory as ‘un-cached’. Within this region the burst mechanism still
functions in order to improve program fetches, but nothing is written to the cache. This may be used to
improve performance in some cases by preventing a ‘one-off’ piece of in-line code from replacing a much-
executed loop in the cache. The region is defined as:

 RCPU_CACHEILO <= burst_address < RCPU_CACHEIHI

The register-values must be cache-line-aligned, i.e. A4..A0 are zero, corresponding to the 32 bytes in a
cache line. To disable the ignore mechanism, set RCPU_CACHEILO=RCPU_CACHEIHI.

Warning: Trying to execute code from the ignored region whilst ‘EN_IMMED’ and ‘EN_LINE’ are clear will
cause the RCPU to hang.

Cache Organisation

The cache is divided into ‘lines’. Each line is 32 bytes long (i.e. it can contain up to 16 instructions) and is
always filled in a single burst. The lines are paired into 2-line ‘sets’, and there are 64 sets in total (the
pairing is explained under ‘Thrashing’ below).

These sets map onto main memory as a 2K block, repeated throughout memory:

Addr Set
000000 set0
000020 set1
000040 set2

0007E0 set63
000800 set0
000820 set1
000840 set2

000FE0 set63
001000 set0
001020 set1
001040 set2

 (and

so on)
Thus each set maps onto many different memory locations, each 2K apart. When the RCPU executes an
instruction from a location that is not in the cache (a ‘cache miss’), the cache fills the entire set that maps
onto that location. Each set also has a ‘valid bit’ and an ‘address tag’ which remembers which address
that set was filled from, or indeed whether it has ever been filled at all. An example will help make this
clear:

Your code jumps to location 0x000800, which happens to be in DRAM. The RCPU requests an instruction
from this address, which maps to cache set0 (see above table). The cache checks the tag for set0
against the requested address. But the tag is either ‘invalid’ (showing that this set has never been filled),
or shows that the set contains data from some other address (perhaps 0x000000). This is a cache miss,
so the cache requests the external bus and bursts 4 phrases in from DRAM. It also updates the set0 tag
to ‘valid, 0x000800’.

Your code then continues to execute, fetching the instructions which formed the rest of the burst, and
therefore can quickly be supplied from the cache. When location 0x000820 is reached, the same process
will occur for set1.

Your code then branches back to 0x000800, which is now contained in set0. For as long as the processor
stays within the loop we have just described, it will run entirely from cache.

The tags for each set are held in longs in RCPU_TRAM, organised as follows:

Bit Name Description
0-12 TAG0 Base address bits A23-A11 of the instructions stored in Line0
13-25 TAG1 Base address bits A23-A11 of the instructions stored in Line1
26 VALID0 True if Tag0 and Line0 are valid
27 VALID1 True if Tag1 and Line1 are valid

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 43

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

28 LRU Indicates which line is ‘least-recently-used’ and will be replaced
on next cache-miss at this set.

29-31 unused Unused by cache.

Thrashing

The RCPU cache is properly defined as ‘a 2-way set-associative instruction cache with LRU
replacement’. This jargon is an attempt to minimise a nasty cache phenomenon called thrashing.

Imagine that you have a 3D-transform engine running on the RCPU from external DRAM, with much of
the code written in ‘C’. You clear and enable the cache then jump to the code...

The loop of code processes each point in turn, calling a subroutine to do the actual transform. Normally,
turning on the cache will have a huge beneficial effect on this code. After the first time through the loop,
both the loop and the subroutine will be in the cache, and subsequent iterations will execute at full speed.

However, if the loop and the subroutine are (some multiple of) 2K apart, they will map onto the same
cache set(s). Thus when the loop calls the subroutine, the subroutine replaces it in the cache. When the
subroutine then returns to the loop, the loop replaces it in the cache. The cache is thrashing, and isn’t
helping at all.

This is not quite true, because the cache is very efficient at reading instructions (because it bursts
phrases at top speed without relinquishing the bus), so its still better than nothing at all. However, this is
obviously an undesirable situation. Especially in ‘C’ it is hard to keep track of the exact memory-position
of routines, and therefore hard to avoid this problem in software.

Hyper-observant readers will have noticed that the cache has 64 sets of 32 bytes each, mapping over a
2K byte area, but when disabled the cache RAM provides 4K bytes of storage. This factor of two
discrepancy is because each set consists of two lines.

The two lines both map onto the same 32-byte region (aliased every 2K throughout memory). Whenever
a cache miss happens at that set, the cache fills whichever line which was least-recently-used, leaving the
other line alone. The ‘LRU’ bit field in the tag tracks this. In the example above, the ‘main loop’ miss
would fill one line, and the ‘subroutine’ miss would fill the other. Execution would then continue entirely
from cache.

This ‘2-way set-associativity’ means that 3 or more frequently-visited locations must map onto the same
set before thrashing occurs. This is unlikely in the critical inner-loops of most algorithms.

Cache Performance

In general, the cache tends to accentuate the characteristics of the RCPU prefetcher and RISC pipeline,
i.e. contiguous, in-line code will execute fast, but jumps hurt performance.

Speed

Thrashing (see above) has the single biggest impact on cache-performance, wasting both bus bandwidth
and slowing-down the RCPU. Large inner-loops (which exceed 4Kbytes in length) or multiple subroutine
calls in inner-loops are the most likely causes.

The cache controller has two mechanisms which optimise processor performance on cache misses:

1. When burst-filling a line, the burst starts from the actual (phrase) address of the wanted instruction,
wrapping-around as necessary to complete the set. For example, an instruction-fetch from 0x00001C will
fetch phrases in the order:

 0x00001C
 0x000000
 0x000008
 0x000010

This speeds execution when the processor jumps into the middle of a cache line, as the processor can
continue execution as soon as the first phrase is fetched.

2. During a line-fill, the cache (including the current line) is unavailable to the processor. Burst-fills from
ROM especially can take a considerable time to complete, during which the prefetch queue can empty,
stalling the processor. To avoid wasting these cycles, a ‘Line FIFO’ in the cache controller containing 2
longs effectively extends the prefetch queue during bursting. As longs are burst into the cache, they are
passed straight to the prefetcher if it is not full, otherwise they are buffered into the FIFO.

Thus as the prefetch queue empties, it can receive the next long from one of three sources:

 Immediate hit: Straight from external memory as it is read-in during a burst.

 Line hit: From FIFO during a burst. Prefetcher was full but has now emptied.

 Cache hit: From cache. Long is already in cache, and no burst is in progress.

Space

If possible, routines should be aligned on line-start (4-phrase) boundaries. If a routine starts at the end of
a cache-line (e.g. at address 0x00001E) then all the previous bytes in the line may be wasted, despite
having taken time to read in and cache space to store. Compiler-writers might like to provide a command-
line flag which forces line-alignment of subroutines (at the cost of increased code-size).

Routines which end at the start of a cache-line (e.g. at address 0x000022) are similarly wasteful, as the
whole of the rest of the cache-line may be wasted.

Cache-efficiency ‘super-sleuths’ can examine the contents of the cache at any time by disabling and
dumping the contents of RCPU_TRAM. The ‘LRU’ bits for each set indicate the line which will be replaced
next.

RCPU Memory Map

The RCPU sub-system address space contains the following locations:

Addr Name r/w Description
F18000 RCPU_REGS RW RCPU registers, sixty-four 32 bit locations
F18100 RCPU_FLAGS RW RCPU flags
F18104 RCPU_MTXC W RCPU matrix control
F18108 RCPU_MTXA W RCPU matrix address
F1810C RCPU_BIGEND W RCPU big / little endian control
F18110 RCPU_PC RW RCPU program counter
F18114 RCPU_CTRL RW RCPU operation control / status
F18118 RCPU_HIDATA RW RCPU bus interface high data
F1811C RCPU_REMAIN R RCPU division remainder
F18120 RCPU_DMACNT W RCPU DMA transfer count
F18124 RCPU_DMACTL W RCPU DMA control register
F18124 RCPU_DMASTAT R RCPU DMA status
F18128 RCPU_DMAEA W RCPU DMA external address
F1812C RCPU_DMAIA W RCPU DMA internal address
F1E000 RCPU_RAM RW RCPU local data RAM base, 256 x 32 bits
F1E800 RCPU_TRAM RW RCPU cache tag RAM base, 64 x 32 bits
F1F000 RCPU_PRAM RW RCPU cache data RAM base, 1024 x 32 bits

To the RCPU all these addresses appear as 32 bit locations, and all transfers to them should be long
transfers. The sole exception is the block of 1K bytes of RAM at F1E000, to which the RCPU can perform
byte and word transfer.

These locations may be accessed by all other processors for read or write as appropriate at the above
addresses, via the RCPU slave access port, where they appear to the system as 16 bit IO space memory.
As they are all actually 32 bits, transfers must always be performed in pairs, in the order low address then
high address.

In addition, for high-speed write operations by 32 bit or 64 bit bus masters (especially for blit transfers),
they may be written to as 32 bit locations at an offset of plus 8000 hex from the addresses above. They
are not readable at these addresses. They are not accessible to the RCPU at the plus 8000 hex offset.

Interrupts

There are six interrupts sources within the RCPU. These are allocated as follows:

5 UART interrupt
4 Video interrupt
3 Object processor CPU interrupt
2 GPU to CPU interrupt
1 Puck interrupt
0 CPU interrupt

Interrupts 2 to 4 are the same interrupt signals connected to the 68000 interrupt controller in Oberon.
They are separately available here, for local use or masking. The 68000 interrupt controller does not
control these - if one of these interrupts is enabled at source, then all you have to do is to enable them
within the RCPU to get the interrupt.

Page 44 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Internal Registers

This section describes the internal registers of the Graphics processor. Note that some of these are read
or write only.

All RCPU registers are 32 bit, and will require all 32 bits to be written.

RCPU Flags Register F18100 Read/Write

This register provides status and control bit for several important RCPU functions. Control bits are:

Bit Name Description
0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic operation

was zero. Certain arithmetic instructions do not affect the flags,
see above.

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borrow out of the
adder/subtract, and reflects carry out of some shift operations,
but it is not defined after other arithmetic operations.

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic
operation was negative.

3 IMASK Interrupt mask, set by the interrupt control logic at the start of the
service routine, and is cleared by the interrupt service routine
writing a 0. Writing a 1 to this location has no effect.

4-8 INT_ENA0-4 Interrupt enable bits for interrupts 0-4. The status of these bits is
overridden by IMASK. Interrupts are allocated as follows:
5 UART
4 Blitter
3 Object Processor
2 Timing generator
1 DSP interrupt, the interrupt output from Puck
0 CPU interrupt

9-13 INT_CLR0-4 Interrupt latch clear bits. These bits are used to clear the interrupt
latches, which may be read from the status register. Writing a
zero to any of these bits leaves it unchanged, and the read value
is always zero.

14 REGPAGE Switches from register bank 0 to register bank 1. This function is
overridden by the IMASK flag, which forces register bank 0 to be
used.

15 DMAEN When DMAEN is set, RCPU LOAD and STORE instructions
perform external memory transfers at DMA priority, rather than
RCPU priority. This has no effect on program data fetches, which
continue at RCPU priority.
This bit must not be changed while an external memory cycle is
active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it
in an interrupt service routine.

16 INT_ENA5 Interrupt enable bit for interrupt 5. Function as bits 4-8.
17 INT_CLR5 Interrupt latch clear bit for interrupt 5. Function as bits 9-13.
18 OVERFLOW_FLAG The ALU overflow flag, which is meaningful for two types of

operation: either it means the last add or subtract operation was
not representable for signed arithmetic, or it represents the state
of the bit set or cleared by the last bit set or clear operation
before the bit was set or cleared. Signed arithmetic overflow
occurs when:
• the sum of two positive numbers gives a negative result
• the sum of two negative numbers gives a positive result
• a negative number is subtracted from a positive number and

gives a negative result
• a positive number is subtracted from a negative number and

gives a positive result
Note that this bit appears in bit 16 of the GPU.

19 EXT_MULT Enable extended multiplier. Normally multiplies are 16x16 to give
a 32-bit result. When this bit is set, multiplies are 16x32, where
the destination is the 32-bit operand, giving a 48 bit result. This
function does not work with matrix multiplies.
The ENHANCED bit must be set for this function to work.

20 EXT_MHIGH This bit selects the high 32 bits of the multiplier result when
performing an extended multiply. The bottom 16 bits are ignored.

21 EXT_MSAT This bit select the bottom 32 bits of the multiplier result, but
saturates them as appropriate. If overflow has occurred into the
top 16 bits, then the result is the largest (or smallest for signed
negative underflow) representable integer. This works for both
signed and unsigned multiplies.
signed multiplies:
result > 7FFFFFFF, result set to 7FFFFFFF
result < 80000000, result set to 80000000
unsigned multiplies:
result > FFFFFFFF, result set to FFFFFFFF
If this bit is set, then EXT_MHIGH is ignored.

WARNING - when you write a value to this register, it may not appear to have changed in the following
two instructions, because of pipe-lining effects. If you are going to use the flags set by a STORE
instruction, or are changing one of the other bits such as the register bank, then ensure that there are two
NOPs after the STORE to this register.

Matrix Control Register F18104 Write only

This register controls the function of the MMULT instruction. Control bits are:

Bit Name Description
0-3 MWIDTH Matrix width, in the range 3 to 15
4 MADDW When set, successive reads of the matrix held in memory are

separated by the matrix width. When clear, reads are from
consecutive locations.

Matrix Address Register F18108 Write only

This register determines where, in local RAM, the matrix held in memory is.

Bit Name Description
2-12 MTXADDR Matrix address, in the range F1E000 - F1FFFC.

Data Organisation Register F1810C Write only

This register controls the physical layout of pixel data and RCPU I/O registers. If its current contents are
unknown, the same data should be written to both the low and high 16 bits.

Bit Name Description
0 BIG_IO When this bit is set, 32 bit registers in the CPU I/O space are big-

endian, i.e. the more significant 16 bits appear at the lower
address.

1 BIG_PIX When this bit is set the pixel organisation is big-endian. See the
discussion elsewhere in this document.

2 BIG_INSTR Normally, instructions are executed from a long-word in the order
low word then high word. When this bit is set the execution
ordering is reversed, i.e. high word then low word. However,
move immediate data remains little-endian, i.e. the data must
always be in the order low word then high word in the instruction
stream.

3 BIG_TROUBLE Under no circumstances set this bit. Data will be swapped in
unlikely ways just when you least expect it. Let me tell you what I
think of big-endian organisation (continued on page 396)...

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 45

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

RCPU Program Counter F18110 Read/Write

The RCPU program counter may be written whenever the RCPU is idle (RCPUGO is clear). This is
normally used by the CPU to govern where program execution will start when the RCPUGO bit is set.

The RCPU program counter may be read at any time, and will give the address of the instruction currently
being executed. If the RCPU reads it, this must be performed by the MOVE PC,Rn instruction, and not by
performing a load from it.

The RCPU program counter must always be written to before setting the RCPUGO control bit. When the
RCPUGO bit is cleared, the program counter value will be corrupted, as at this point the pre-fetch queue
is discarded.

RCPU Control/Status Register F18114 Read/Write

This register governs the interface between the CPU and the RCPU.

Bit Name Description
0 RCPUGO This bit stops and starts the processor. Any processor may write

to this register to start it, however only the processor controlled
by this bit may clear it (unless single-stepping is enabled).

1 CPUINT Writing a 1 to this bit allows the RCPU to interrupt the CPU.
There is no need for any acknowledge, and no need to clear the
bit to zero. Writing a zero has no effect. A value of zero is always
read.

2 RCPUINT0 Writing a 1 to this bit causes a RCPU interrupt type 0. There is no
need for any acknowledge, and no need to clear the bit to zero.
Writing a zero has no effect. A value of zero is always read.

3 SINGLE_STEP When this bit is set RCPU single-stepping is enabled. This
means that program execution will pause after each instruction,
until a SINGLE_GO command is issued.
The read status of this flag, SINGLE_STOP, indicates whether
the RCPU has actually stopped, and should be polled before
issuing a further single step command. A one means the RCPU
is awaiting a SINGLE_GO command.

4 SINGLE_GO Writing a one to this bit advances program execution by one
instruction when execution is paused in single-step mode.
Neither writing to this bit at any other time, nor writing a zero, will
have any effect. Zero is always read.

5 unused Write zero.
6-10 INT_LAT0-4 Interrupt latches. The status of these bits indicate which interrupt

request latch is currently active, and the appropriate bit should be
cleared by the interrupt service routine, using the INT_CLR bits in
the flags register. Writing to these bits has no effect.

11 BUS_HOG When the RCPU is executing code out of external RAM it will
normally give up the bus between program fetches, which should
allow the CPU to continue to run at the same time. Setting this bit
causes the RCPU to attempt to hold on to the bus between
program fetches, which improves its execution speed, at the
expense of any lower priority device using the bus.

12-15 VERSION These bits allow the RCPU version code to be read. Current
version codes are:
1 Pre-production test silicon (Jaguar One)
2 First production release (Jaguar One)
3 Pre-production test silicon (Midsummer)
Future variants of the RCPU may contain additional features or
enhancements, and this value allows software to remain
compatible with all versions. It is intended that future versions will
be a superset of this RCPU.

16 INT_LAT5 Interrupt latch for interrupt 5. Has the same function for interrupt
5 as bits 6-10 have for interrupts 0-4.

17 ENHANCED The bit has to be set to enable some of the enhanced
functionality of the RCPU. The following functions are enabled
when this bit is set:
• additional condition codes are available to the JUMP and JR

instructions
• the JRE op-code is enabled, using NOP with non-zero

register number fields.
• The bug related to two consecutive divides is fixed
• the software controlled reset function is enabled

18 SCORE_WRITE When this bit is set, score-board protection is enabled for register
writes. This means that if a slow write to a register, such as
external load or divide, is followed by a fast write to a register,
such as register move, that the writes will be executed in the
correct order. This bit should normally always be set, but may be
cleared for strict compatibility with Jaguar One.

19 PACK_RGB When this bit is set the pack and unpack instructions operate on
16 bit RGB data instead of CRY data.

20 RESET Writing a one to this bits aborts all RCPU operation instantly if the
enhanced bit is set. Everything is cleared down to its power on
state, execution halts, the RCPU stops completely, and the
processor sub-system must be re-initialised from scratch. This bit
is very powerful. Writing a zero has no effect.
This bit must never be set in normal operation. It can have
catastrophic side effects on other processors, and is only
provided as a last resort for fatal situations.

High Data Register F18118 Read/Write

This 32 bit register provides the high part of RCPU phrase reads and writes. It is physically a single
register, and therefore a phrase read followed by a phrase write will write back the same high data unless
this register is modified.

Divide unit remainder F1811C Read only

This 32 bit register contains a value from which the remainder after a division may be calculated. Refer to
the section on the Divide Unit.

Divide unit Control F1811C Write only

Bit Name Description
0 DIV_OFFSET If this bit is set, then the divide unit performs division of unsigned

16.16 bit numbers, otherwise 32 bit unsigned integer division is
performed.

RCPU DMA Length Counter F18120 Write only

Writing to this counter sets up the length of the transfer and initiates it. The length is written in bytes but
must be a whole number of phrases, and the allowable range of values is between 8 (one phrase) and
32760 / 7FF8 hex. Only the RCPU is allowed to write to this register if the RCPU is running.

RCPU DMA Control F18124 Write only

This register controls various aspects of the DMA transfer. It is static.

Bit Name Description
0 DMA_OUT Controls the direction of the DMA transfer. When set transfer is

from internal to external memory.
1 DMA_DMA When this bit is set the transfer occurs at the high RCPU bus

priority level (DMA level), when clear the transfer occurs at the
normal RCPU priority level.

Page 46 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

RCPU DMA External Address F18128 Write only

This register gives the phrase aligned address of external DMA data. It is a counter, and so must be
written before each DMA transfer. It wraps within a 4 Mbyte window. It must not be set to an address
within the RCPU internal space, this will not work reliably, and may cause unpredictable system
crashes.

RCPU DMA Internal Address F1812C Write only

This register gives the long aligned address of internal DMA data, it is also a counter like the external
address and so must be written to before each transfer. Valid addresses are in the range F18000 to
F05FFC.

RCPU DMA Status F18124 Read only

This read port allows the status of the DMA controller to be examined. This register is all zero when the
DMA transfer is complete, and this condition should be polled for. Bits are assigned as follows:

Bit Name Description
0 OCYCLE There is a cycle active on the external bus
1 OCYCLERD The read transfer part of an external cycle is active.
2 DMA_PEND There is a DMA transfer pending.
3-15 DMA_COUNT These correspond to the same bits in the DMA length counter,

which counts down as each phrase is transferred.
16-31 unused Will be zero when the DMA is finished.

RCPU Extended UART Control F1813C Read/write

This register supplements the ASICTRL register at F10032, and that register must also be initialised
before the UART is used. For a full discussion of the UART, refer to the section on it below.

Bit Name Description
0 ERROR When read, this bit indicates that one of the error bits below is

set. Writing a one to this bit clears all the error flags. Writing a
zero has no effect.

1 BYTE_INT When this bit is set, the RCPU is interrupted after each byte is
received. When this bit is clear, it is interrupted when four bytes
have been received.

2 RX_INT When this bit is set, receiver interrupts are enabled. An interrupt
is generated at the rate determined by BYTE_INT. The status of
this bit is reflected by a read.

3 TX_INT When this bit is set, transmitter interrupts are enabled. An
interrupt is generated whenever the transmit buffer is empty. The
TX_BYTE bit below controls whether this is after one or four
bytes. The status of this bit is reflected by a read.

4 NOPAR When this bit is set, the receiver no longer expects to receive a
parity bit. This allows the standard 8-bit, no parity, one stop bit
format to be received. It has no effect ion the transmitter, so to
transmit this format you should ensure the transmitted parity bit
corresponds to a stop bit. This bit also applies to the IO interface.
The status of this bit is reflected by a read.

5 TX_BYTE Set this bit to transmit single bytes. If this is set only the first byte
is transmitted. The status of this bit is reflected by a read.

6 RCPU_TRANSMIT Set this bit if the RCPU is to control the UART transmit interface.
If this bit is clear, the normal IO interface controls transmit. The
status of this bit is reflected by a read.

7 RCPU_RECEIVE Set this bit if the RCPU is to control the UART receive interface.
If this bit is clear, the normal IO interface controls receive. The
status of this bit is reflected by a read.

16 OVERRUN_ERROR This error flag indicates that the four byte receive buffer has
overflowed and receiver data has been lost. This bit is read only.

17 FRAMING_ERROR This error flag indicates that a framing error occurred on received
data. The UART will cease operation until the error is cleared.
This bit is read only.

18 PARITY_ERROR This error flag indicates that received data has a parity error. The
UART will cease operation until the error is cleared. This bit is
read only.

19-21 BYTES_IN_BUF This value indicates how many bytes are present in the UART
receive data buffer. Valid values are 0-4. Even if the receiver is in
byte mode (BYTE_INT set), further values will be added to the
buffer until the long overflows. This value is read only.

22-24 BYTES_LAST_READ This value indicates how many bytes were present the last time
the receive data buffer was read. As it is not possible to read the
receive data buffer and the BYTES_IN_BUF value atomically, the
counter is latched whenever a read occurs and the value stored
here.

25 RX_INT_FLAG The current interrupt was caused by the receiver. This bit is read-
only.

26 TX_INT_FLAG The current interrupt was caused by the transmitter. This bit is
read-only.

RCPU UART Data F18140 Read/write

This long location contains a long write-only transmit data buffer, and a long read-only receive data buffer.
For a full discussion of the UART, refer to the section on it below. These buffers are big-endian, this
means that the byte order of transmission or reception is as follows:

Bits Order
24-31 first byte
16-23 second byte
8-15 third byte
0-7 fourth byte

If the interface is being operated in byte mode, then the byte should be read from or written to bits 0-7.
However, note that if read overflow occurs (which is not flagged as an error in any case until the buffer
contains four bytes), then the bytes will be shifted up in the long buffer as they are received. This means
that a byte mode RCPU UART receiver actually has nearly four byte times to respond to the interrupt, a
truly massive latency were it to ever occur!

RCPU Stack Cache Base Pointer F18144 RW

This register points to the long aligned address where the stack cache base lies. This mechanism allows
stack caching by mapping the high 512 bytes of the RCPU data RAM to a second location anywhere in
memory. Accesses to this address then occur to local RAM, effectively caching the top 512 bytes of the
stack. (The bottom 512 bytes of the data RAM contain the interrupt vectors and so all of RAM cannot be
used for this).

This 512 byte mapping “rolls” rather than ”slides”, so that location F1E200 always maps to an address
whose bottom 9 bits are 0, and so on.

The base pointer must never be set to greater then FFFE00, as the result could be catastrophic.

The base pointer may be on any long-word boundary, allowing considerable flexibility in how this
mechanism is used. Compiler writers may choose to allocate more RAM than is needed at a given
procedure call by shifting the base pointer to below the bottom of the stack, so that the allocation
overhead does not always occur. It may also be necessary to build some hysteresis into the allocation /
de-allocation mechanism so that it does not thrash.

When a procedure prologue needs to adjust the stack cache base, it should move the base pointer to its
new location, then copy the number of bytes by which the base pointer has moved (Area A) to the correct
location in external RAM which has just been uncovered by the cache (Area C). Procedure epilogue code
should copy the amount of bytes by which the pointer is to be moved (Area C) from the location in
external RAM to the area that is about to be uncovered (Area A), then move the base pointer. Area B is
not affected by this operation and need not be moved.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 47

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Base Pointer

Base Pointer
Area A

Area B

Area C Area E

Area B

Area D

Memory Map Memory Map

Allocate stack space (prologue)

De-allocate stack space (epilogue)

Area of external RAM
overlaid by internal
RCPU data RAM

Note that the area overlaid should only be used by the RCPU as other processors cannot see any
modifications that have been made within the overlaid area.

Note also that if the DMA mechanism is to be used to copy this data, then it should be pointed at the copy
of the RAM at location F1E200, as it cannot access the overlaid address from its internal address pointer.

Digital Sound Processor - DSP

Introduction

The DSP is part of the Puck chip in Jaguar, and is one of the Jaguar RISC processors, which are
described above. It uses a very similar instruction set and programming model to the GPU and RCPU,
but there are certain differences specific to its role as a sound processor. The DSP has full access to the
system memory map as a bus master, and its internal memory may be accessed by the other bus
masters within the Jaguar System.

The DSP performs two roles within Jaguar: its primary function is sound synthesis; and it may also be
available for additional graphics processing.

Sound synthesis may be the playback of sampled sound or algorithmic sound generation, or a mixture of
the two. As the DSP is a fast general purpose processor it may be used for a broad range of synthesis
techniques. It contains several optimisations for sound processing when compared to the GPU, in
particular higher precision multiply / accumulate operations, circular buffer management, audio wave
tables in local ROM, additional local fast RAM, and audio output hardware within its internal address
space. It also contains hardware specifically for playing back PCM sound samples held in some private
DSP memory.

As many sound generation techniques will not require anything like the full power of the DSP, it may also
be used as an additional graphics processor. It has full access to the entire system address space. It
might well be used with sound synthesis occurring under an interrupt at sample rate, with the underlying
code performing something like matrix multiplies for 3D object rotation.

Memory Map

The DSP has 8K bytes of local fast RAM (twice as much as the GPU), and 2K bytes of wave tables to
help with sound synthesis. These are laid out as follows:

 F1A000 - F1A1FF DSP control registers
 F1B000 - F1CFFF local RAM
 F1D000 - F1DFFF wave table ROM

Wave Table ROM

The wave table ROM contains eight 128 entry wave tables. These are signed 16 bit values, and are sign-
extended to 32 bits, so that the ROM appears to occupy 1K 32 bit locations. Only the bottom 16 bits are
significant.

The waves available are as follows:

F1D000 TRI A triangle wave
F1D200 SINE A full wave SINE
F1D400 AMSINE An amplitude modulated SINE wave
F1D600 SINE12W A sine wave and its second order harmonic
F1D800 CHIRP16 A chirp - this is a sine wave increasing in frequency
F1DA00 NTRI A triangle wave with noise superimposed
F1DC00 DELTA A spike
F1DE00 NOISE White noise

Arithmetic Functions

The DSP replaces the unsigned saturation functions of the GPU with two signed operations. SAT16S
takes a signed 32 bit operand and saturates it to a signed 16 bit value, i.e. if it is less than $FFFF8000 it
becomes $FFFF8000 and if it is greater than $00007FFF it becomes $00007FFF. SAT32S takes a signed
40 bit operand (see the section below entitled 'Extended Precision Multiply / Accumulates') and saturates
it to a signed 32 bit value in a similar manner.

Interrupts

There are six interrupts sources within the DSP. These are allocated as follows:

5 External interrupt 1
4 External interrupt 0
3 Timer interrupt 1
2 Timer interrupt 0
1 I2S interface interrupt
0 CPU interrupt

The external interrupts are inputs from additional Jaguar hardware outside the Oberon & Puck system.
The timer interrupts are from Puck's local programmable timers, the I2S interrupt is from the local
synchronous serial interface, and the CPU interrupt is generated by any processor writing to the DSP
control register.

Circular Buffer Management

As circular buffers are common in DSP algorithms, for sample-looping, FIFOs, and so on; there is
hardware support for addressing circular buffers. These have to be 2n words long, and aligned to a 2n
boundary, where n is any practical value.

The support takes the form of two variants of ADDQ and SUBQ, namely ADDQMOD and SUBQMOD.
These allow pointers to be updated with the value wrapping in the form of counting modulo 2n. This is
controlled by the modulo register which is a mask on the result of these instructions. Where a bit is 1 in
this register, the result of the ADDQMOD or SUBQMOD is unaffected by the instruction, where it is 0 the
add may modify it. Normally the high bits of this register are set to one, and the low bits set to zero as
appropriate.

DSP Flags Register F1A100 Read/Write

This register provides status and control bit for several important DSP functions. Control bits are:

Page 48 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Bit Name Description
0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic operation

was zero. Certain arithmetic instructions do not affect the flags,
see above.

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borrow out of the
adder/subtract, and reflects carry out of some shift operations,
but it is not defined after other arithmetic operations.

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic
operation was negative.

3 IMASK Interrupt mask, set by the interrupt control logic at the start of the
service routine, and is cleared by the interrupt service routine
writing a 0. Writing a 1 to this location has no effect.

4-8 INT_ENA0-4 Interrupt enable bits for interrupts 0-4. The status of these bits is
overridden by IMASK.

9-13 INT_CLR0-4 Interrupt latch clear bits for interrupts 0-4. These bits are used to
clear the interrupt latches, which may be read from the status
register. Writing a zero to any of these bits leaves it unchanged,
and the read value is always zero.

14 REGPAGE Switches from register bank 0 to register bank 1. This function is
overridden by the IMASK flag, which forces register bank 0 to be
used.

15 DMAEN When DMAEN is set, DSP LOAD and STORE instructions
perform external memory transfers at DMA priority, rather than
GPU priority. This has no effect on program data fetches, which
continue at GPU priority.
This bit must not be changed while an external memory cycle is
active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it
in an interrupt service routine.

16 INT_ENA5 Interrupt enable bit for interrupt 5. Function as bits 4-8.
17 INT_CLR5 Interrupt latch clear bit for interrupt 5. Function as bits 9-13.
18 OVERFLOW_FLAG The ALU overflow flag, which is meaningful for two types of

operation: either it means the last add or subtract operation was
not representable for signed arithmetic, or it represents the state
of the bit set or cleared by the last bit set or clear operation
before the bit was set or cleared. Signed arithmetic overflow
occurs when:
• the sum of two positive numbers gives a negative result
• the sum of two negative numbers gives a positive result
• a negative number is subtracted from a positive number and

gives a negative result
• a positive number is subtracted from a negative number and

gives a positive result
Note that bit appears in bit 16 of the flags registers of the GPU.

WARNING - when you write a value to this register, it may not appear to have changed in the following
two instructions, because of pipe-lining effects. If you are going to use the flags set by a STORE
instruction, or are changing one of the other bits such as the register bank, then ensure that there are two
NOPs after the STORE to this register.

DSP Matrix Control Register F1A104 Write only

This register controls the function of the MMULT instruction. Control bits are:

Bit Name Description
0-3 MWIDTH Matrix width, in the range 3 to 15
4 MADDW When set, successive reads of the matrix held in memory are

separated by the matrix width. When clear, reads are from
consecutive locations.

DSP Matrix Address Register F1A108 Write only

This register determines where, in local RAM, the matrix held in memory is.

Bit Name Description
2-12 MTXADDR Matrix address, in the range F1B000 - F1CFFC.

DSP Data Organisation Register F1A10C Write only

This register controls the physical layout of the DSP I/O registers and instructions. If its current contents
are unknown, the same data should be written to both the low and high 16 bits.

Bit Name Description
0 BIG_IO When this bit is set, 32 bit registers in the CPU I/O space are big-

endian, i.e. the more significant 16 bits appear at the lower
address.

2 BIG_INSTR Normally, instructions are executed from a long-word in the order
low word then high word. When this bit is set the execution
ordering is reversed, i.e. high word then low word. However,
move immediate data remains little-endian, i.e. the data must
always be in the order low word then high word in the instruction
stream.

DSP Program Counter F1A110 Read/Write

The DSP program counter may be written whenever the DSP is idle (DSPGO is clear). This is normally
used by the CPU to govern where program execution will start when the DSPGO bit is set.

The DSP program counter may be read at any time, and will give the address of the instruction currently
being executed. If the DSP reads it, this must be performed by the MOVE PC,Rn instruction, and not by
performing a load from it.

The DSP program counter must always be written to before setting the DSPGO control bit. When the
DSPGO bit is cleared, the program counter value will be corrupted, as at this point the pre-fetch queue is
discarded.

DSP Control/Status Register F1A114 Read/Write

This register governs the interface between the CPU and the DSP.

Bit Name Description
0 DSPGO This bit stops and starts the DSP. The CPU or DSP may write to

this register at any time, but only the DSP should be used to clear
this bit (unless single-stepping is enabled).

1 CPUINT Writing a 1 to this bit allows the DSP to interrupt the CPU. There
is no need for any acknowledge, and no need to clear the bit to
zero. Writing a zero has no effect. A value of zero is always read.

2 DSPINT0 Writing a 1 to this bit causes a DSP interrupt type 0. There is no
need for any acknowledge, and no need to clear the bit to zero.
Writing a zero has no effect. A value of zero is always read.

3 SINGLE_STEP When this bit is set DSP single-stepping is enabled. This means
that program execution will pause after each instruction, until a
SINGLE_GO command is issued.
The read status of this flag, SINGLE_STOP, indicates whether
the DSP has actually stopped, and should be polled before
issuing a further single step command. A one means the DSP is
awaiting a SINGLE_GO command

4 SINGLE_GO Writing a one to this bit advances program execution by one
instruction when execution is paused in single-step mode.
Neither writing to this bit at any other time, nor writing a zero, will
have any effect. Zero is always read.

5 unused Write zero.
6-10 INT_LAT0-4 Interrupt latches for interrupts 0-4. The status of these bits

indicate which interrupt request latch is currently active, and the
appropriate bit should be cleared by the interrupt service routine,
using the INT_CLR bits in the flags register. Writing to these bits
has no effect.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 49

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

11 BUS_HOG When the DSP is executing code out of external RAM it will
normally give up the bus between program fetches. This
behaviour should allow the CPU to continue to run at the same
time. Setting this bit causes the DSP to attempt to hold on to the
bus between program fetches, which improves its execution
speed, at the expense of any lower priority device using the bus.

12-15 VERSION These bits allow the DSP version code to be read. Current
version codes are:
2 First production release
Future variants of the DSP may contain additional features or
enhancements, and this value allows software to remain
compatible with all versions. It is intended that future versions will
be a superset of this DSP.

16 INT_LAT5 Interrupt latch for interrupt 5. Has the same function for interrupt
5 as bits 6-10 have for interrupts 0-4.

17 ENHANCED The bit has to be set to enable some of the enhanced
functionality of the DSP. The following functions are enabled
when this bit is set:
• additional condition codes are available to the JUMP and JR

instructions
• the JRE op-code is enabled, using NOP with non-zero

register number fields.
• The bug related to two consecutive divides is fixed
• the software controlled reset function is enabled

18 SCORE_WRITE When this bit is set, score-board protection is enabled for register
writes. This means that if a slow write to a register, such as
external load or divide, is followed by a fast write to a register,
such as register move, that the writes will be executed in the
correct order. This bit should normally always be set, but may be
cleared for strict compatibility with Jaguar One.

19 unused
20 RESET Writing a one to this bits aborts all RCPU operation instantly if the

enhanced bit is set. Everything is cleared down to its power on
state, execution halts, the RCPU stops completely, and the
processor sub-system must be re-initialised from scratch. This bit
is very powerful. Writing a zero has no effect.
This bit must never be set in normal operation. It can have
catastrophic side effects on other processors, and is only
provided as a last resort for fatal situations.

21 INT_POL When this bit is set, the polarity of EINT0 and EINT1 to the DSP
is reversed. This is an enhanced function, so the enhanced bit
must also be set.

Modulo instruction mask F1A118 Write only

This 32 bit register holds the value which governs which bits are modified by the ADDQMOD and
SUBQMOD instructions. A 1 means that the bit will be unaffected, a 0 means that it may be changed.
Normally, the higher bits are set to 1 and the lower bits to 0. This allows addresses to be readily
generated for circular buffers of size 2n bytes, where n is between 0 and 31.

Divide unit remainder F1A11C Read only

This 32 bit register contains a value from which the remainder after a division may be calculated. Refer to
the section on the Divide Unit.

Divide unit Control F1A11C Write only

Bit Name Description
1 DIV_OFFSET If this bit is set, then the divide unit performs division of unsigned

16.16 bit numbers, otherwise 32 bit unsigned integer division is
performed.

Multiply & Accumulate High Result Bits F1A120 Read only

This 32 bit register allows the high eight bits of the accumulated result to be read. After a RESMAC
instruction the result register of the RESMAC contains the bottom 32 bits of the accumulated value, and
this register contains the top eight bits, which are sign-extended to 32 bits.

DSP DMA Length Counter F1A120 Write only

Writing to this counter sets up the length of the transfer and initiates it. The length is written in bytes but
must be a whole number of phrases, and the allowable range of values is between 8 (one phrase) and
32760 / 7FF8 hex.. Only the DSP is allowed to write to this register if the DSP is running.

DSP DMA Control F1A124 Write only

This register controls various aspects of the DMA transfer. It is static.

Bit Name Description
0 DMA_OUT Controls the direction of the DMA transfer. When set transfer is

from internal to external memory.
1 DMA_DMA When this bit is set the transfer occurs at the high DSP bus

priority level (DMA level), when clear the transfer occurs at the
normal DSP priority level.

DSP DMA External Address F1A128 Write only

This register gives the phrase aligned address of external DMA data. It is a counter, and so must be
written before each DMA transfer. It wraps within a 4 Mbyte window. It must not be set to an address
within the DSP internal space, this will not work reliably, and may cause unpredictable system
crashes.

DSP DMA Internal Address F1A12C Write only

This register gives the long aligned address of internal DMA data, it is also a counter like the external
address and so must be written to before each transfer. Valid addresses are in the range F1A000 to
F1DFFC.

DSP DMA Status F1A124 Read only

This read port allows the status of the DMA controller to be examined. This register is all zero when the
DMA transfer is complete, and this condition should be polled for. Bits are assigned as follows:

Bit Name Description
0 OCYCLE There is a cycle active on the external bus
1 OCYCLERD The read transfer part of an external cycle is active.
2 DMA_PEND There is a DMA transfer pending.
3-15 DMA_COUNT These correspond to the same bits in the DMA length counter,

which counts down as each phrase is transferred.
16-31 unused Will be zero when the DMA is finished.

Private Memory Interface and PCM Processor

The DSP has some external memory which no other processor can use. This memory is on a private bus
so that the DSP can access it without using the main 64-bit bus. It is intended for storing PCM sound
samples, so that a multiple voice sampled sound generator may be implemented without any main bus
overhead. This private memory may be either DRAM or ROM (SRAM, EEPROM or FLASH are also
possible in ROM mode), and may be either 4 or 8 bit. The exact type has not yet been selected, and the
hardware is capable of supporting all these types.

You can access this private memory in one of two ways.

1. DSP load and store instructions may access it in the address range E00000h to EFFFFFh.

2. A simple PCM list processor can fetch sound sample data from it.

Because of this, the DSP cannot perform loads or stores to E00000 to EFFFFF on the main bus.

Page 50 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

PCM List Processor

The PCM List Processor is a data transfer engine within the DSP whose function is to fetch sample table
data from the DSP private memory, and place the sample data in DSP internal memory. It can read 8 or
16 bit samples, it can decompress 8-bit samples, and it can handle interpolation and looping.

The PCM list processor is a little like the object processor in that it reads a list of sample descriptions and
uses them to fetch the sample data. It does not have any means of branching, unlike the object
processor. Its list only needs modifying when a sample is to be started, stopped, or when a looping
sample has to be modified. It is normally triggered at sample rate by an interrupt process.

Each time it is triggered, the PCM list processor executes a linear list of PCM sample descriptions in DSP
local RAM, and fetches the sample data from the private memory. A special sample with a table size of
minus one flags the end of the table. The PCM processor has the following features for playing samples

• variable rate sample play (pitch shifting)
• interpolation between successive samples
• sample looping or stop at the end of each sample table
• automatic advance of the sample pointers, so that the only software overhead is firing it off for each

set of samples, and summing the resultant sample values
• support for eight and sixteen bit samples, and for eight bit µ-law compressed samples
• samples may be played forwards or backwards

A sample description has the following format:

Long Name Bits Description
1 table size 0-19 subtracted from pointer when looping, if this all ones, then

this sample description is the end of the table
2 table end address 0-19 used to detect end of sample
 µ-law flag 27 sample is 8-bit µ-law data
 backwards flag 28 the sample is being played backwards (negative rate) so

this reverses the end of table test
 word size flag 29 sample is 16 bit words, not 8 bit bytes
 interpolate flag 30 interpolate between sample and next one
 loop flag 31 loop at the table end address, instead of stopping
3 rate, 20.12 bits 0-31 added to pointer after each fetch (19.13 bits for word

samples)
4 pointer, 20.12 bits 0-31 pointer to sample data (19.13 bits for word samples)
5 read value 0-31 sign-extended output sample data

These sample structures should be linearly packed in DSP RAM on a long boundary.

Interpolation uses the most significant six bits of the sample pointer to linearly interpolate between the
sample pointed at and the one above it in memory. It uses a 6 x 16 bit multiplier, so the sample is used at
full precision, but there is only six bits of precision in the interpolation control value. This should be
enough for most purposes.

Compressed Samples

Sixteen bit samples are the ideal way in which to store audio data. However, they are large and so there
is sometimes a need to store them in a more compact form. Much audio data can be stored as eight bit
samples. These can sound reasonable, but they are not so useful for audio data with a wide dynamic
range. The PCM list processor therefore supports compressed samples. These use an eight bit value
which is a non-linear representation of a sixteen bit sample. This gives a reasonable resolution both for
quiet and loud sounds.

Compressed samples for the PCM list processor use µ-law compression to increase the dynamic range of
8-bit samples. µ-Law is widely used in digital audio.

The mu law function is: The inverse µ-law function is:

()y y

x

x
=

+
�

�
�

�

�
�

�

�
�

�

�
�

�

�
��

�

�
��

+

�

�

�
�
�
�
�

�

�

�
�
�
�
�

max

ln
max

ln

1

1

µ

µ

()

x x
e

y

y

= −
�

�

�
�
�

�

�

�
�
�

�

�
�

�

�
� +

�

�
�

�

�
�

max
max

ln 1

1
µ

µ

where ymax = 32767, µ = 255, xmax = 127

This gives a function close, but not identical to, an exponential function. Graphically, it appears thus:

Mu Law Compression

0

5000

10000

15000

20000

25000

30000

35000

127

mu law
inverse mu

The 8-bit sample data is treated as a sign and magnitude number, the sign is stored in the top bit, and the
7-bit magnitude component is used to index a look-up table, which gives a 13-bit de-compressed value.
The sign is restored by complementing the output if required, giving a decompressed value in the range
32764 to -32764.

The actual µ-law expansion table is:
0000 0004 000C 0010 0018 001C 0024 002C 0034 003C 0044 004C 0058 0060 006C 0074
0080 008C 0098 00A4 00B0 00C0 00CC 00DC 00EC 00FC 010C 0120 0134 0144 015C 0170
0184 019C 01B4 01D0 01E8 0204 0220 0240 0260 0280 02A4 02C8 02EC 0314 033C 0368
0394 03C0 03F4 0424 045C 0490 04CC 0508 0548 0588 05D0 0618 0664 06B0 0704 0758
07B4 0810 0874 08D8 0944 09B4 0A28 0AA4 0B20 0BA8 0C30 0CC4 0D5C 0DF8 0EA0 0F4C
1000 10BC 1180 1250 1328 1408 14F0 15E8 16E8 17F0 1908 1A2C 1B5C 1C9C 1DE8 1F44
20B0 222C 23B8 2554 2704 28C8 2AA0 2C8C 2E90 30AC 32DC 3528 378C 3A0C 3CA8 3F64
4240 4538 4854 4B94 4EFC 5288 563C 5A1C 5E28 6260 66C8 6B64 7038 7540 7A80 7FFC

Note that bits 0 and 1 are set to zero on all these values.

DSP PCM List Pointer F1A130 Write only

This register holds the PCM control list pointer. This needs to be written each time the control list is to be
executed, and the action of writing this pointer initiates list execution. This pointer must be an address in
DSP internal RAM only, i.e. it must be in the range F1B000 - F1CFFF, and must be long aligned.

You can read the current list position in the PCM status port.

Bit Name Description
0-1 unused
2-14 List Pointer The valid part of the address.
15-31 unused

DSP PCM Control Register / Status Port F1A134 Read/Write

This register defines the type of memory attached to the private memory interface, and allows certain
status bits of the PCM control unit to be read. It should only be written by the machine initialisation
software, and not by application code.

Bit Name Description
0 DRAM If this bit is set, the attached memory is DRAM, which requires a

multiplexed address, and row/column control signals.
If this bit is clear, the attached memory is ROM or SRAM, and is
addressed directly.

1 NYBBLE If this bit is set, the private memory has a four bit data bus.
If this bit is clear, the private memory has an eight bit data bus.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 51

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

2-4 PTIM If DRAM is set, then this gives the DRAM pre-charge time. The
RAS control line will be high for at least 1 + PTIM clock cycles
between any pair of row cycles. A value of 0 is treated as 8.
If DRAM is clear, then this gives the ROM cycle time. Chip select
is active for 3 + PTIM clock cycles (OE goes active 2 clock cycles
after chip select). A value of 0 is treated as 8.

5-7 RTIM If DRAM is set, then this gives the RAS active time of a refresh
cycle, RAS goes low for RTIM clock cycles, CAS goes low one
clock cycle before RAS, to give CAS-before-RAS refresh
operation. A value of 0 is treated as 8.

8-11 REFRATE This gives the rate of refresh cycles. These are performed at the
rate of one refresh every 64 x (REFRATE + 1). A REFRATE of 0
disables refresh, and 0 should be set if DRAM is not set.

12 IDLE Read-only; set when the PCM list processor is not active. This bit
may be polled after a write to the list pointer to determine when
the list has been processed.

13 NEG_LAT The PMEMLAT output is normally an active high address latch
(for latching the bottom eight bits of the address when DRAM is
clear). If this bit is set, it becomes an active low signal.

13-15 unused Write zero.
16-28 List Pointer Read-only; the current value of the PCM list pointer may be read

here, so that you can determine how much of the list has been
executed.

29-31 unused Write zero.

In the DSP, the Synchronous Serial Interface is mapped into the internal DSP space for higher efficiency
when the DSP is controlling it. These are effectively 32 bit locations. They are described elsewhere in this
document. In summary, they are:

SCLK Serial Clock Frequency F1A150 WO

SMODE Serial Mode F1A154 WO

LTXD Left transmit data F1A148 WO
RTXD Right transmit data F1A14C WO

LRXD Left receive data F1A148 RO
RRXD Right receive data F1A14C RO

SSTAT Serial Status F1A150 RO

Blitter

This section describes the Oberon Blitter.

What is the Blitter?

Blitter is an abbreviation for bit block transfer. It purpose is to process blocks of bits or pixels, by filling
them in with a color or copying them from another block. These blocks may be one contiguous piece, or
they may be sub-blocks (such as rectangles) within a larger pixel array.

The Blitter may also be seen as a hardware engine designed for painting and moving pixels as quickly as
possible - it performs a variety of graphics operations at a rate limited largely by the memory access
speed. It is used as an aid to the GPU, allowing a GPU program to process higher level graphics
operations, whilst the Blitter performs the low-level repetitive pixel-by-pixel operations in parallel.

For example, the GPU might calculate the co-ordinates and gradients associated with a polygon, while
the Blitter draws the strips of pixels. Alternatively, the GPU might be processing text with attributes, and
computing font addresses and window positions, while the Blitter paints the characters.

The Blitter can perform a variety of operations on blocks of memory, including:

• simple memory copies

• copies and fills of rectangles within windows

• line-drawing

• image rotation and scaling

• single-scans of polygons fills

• Gouraud shading

• Z-buffering.

The Blitter can operate on 1, 2, 4, 8, 16 or 32 bit packed pixels, with considerable flexibility with regard to
the memory layout.

The tour de force of the Blitter is its ability to generate Gouraud shaded or textured polygons, using Z-
buffering, in sixteen bit pixel mode. A lot of the logic in the Blitter is devoted to its ability to create these
pixels four at a time, and to write them at a rate limited only by the bus bandwidth, using the GPU to
calculate the texture addresses, Z and intensity gradients, and the polygon vertices. The blitter will then
draw a triangle in a single operation. This will give the system the ability to generate realistic animated 3D
graphics.

Programming the Blitter

The Blitter is programmed by setting up a description of the required operation in its registers. These are
accessible in the system memory map, and so may be set by the GPU or by an external processor.

The registers control the three functional blocks that make up the Blitter, the address generator, data
path, and control logic. Each of these is described in the sections that follow.

The descriptions that follow give a full account of how the Blitter works. These are useful for reference,
but for an introduction to how to use the Blitter see the discussions further on, and in associated
documentation and examples.

Blitter Register Set

The following is a list of all the registers in the blitter:

Addr Name Type Status Description
F02200 A1_BASE WO static A1 base address. This is the lowest address

of the rectangle of pixels which A1 points at.

Page 52 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

F02204 A1_FLAGS WO static A1 control flags. These determine various
aspects of the pixel block pointed at by A1,
such as pixel size, block width, et cetera.

F02208 A1_CLIP WO static A1 clipping window size. The gives the X and
Y size of a window for A1 to clip to. X and Y
pointer values outside this window will not
cause write cycles if this function is enabled.

F0220C A1_PIXEL RW� dynamic† A1 pixel pointer. This points at the pixel where
the blit starts. It is in pixel co-ordinates, and
has sixteen bit X and Y parts. An alternate
(and more logical) view of this register is
provided by the A1_X and A1_Y registers.

F02210 A1_STEP WO� dynamic†‡ A1 step integer part. The step value may be
added to the pixel pointer after each pass
through the inner loop. An alternate view of
this register is provided by the A1_XSTEP and
A1_YSTEP registers.

F02214 A1_FSTEP WO� dynamic†‡ A1 step fractional part. The fractional parts of
the register above. An alternate view of this
register is provided by the A1_XSTEP and
A1_YSTEP registers.

F02218 A1_FPIXEL RW� dynamic† A1 pixel pointer fractional part. This gives the
fractional bits of the pixel pointer. An alternate
view of this register is provided by the A1_X
and A1_Y registers.

F0221C A1_INC WO static A1 increment integer part. The increment
value may be added to the pixel pointer after
each pixel is drawn.

F02220 A1_FINC WO static A1 increment fractional part. This is the
fractional part of the register above.

F02224 A2_BASE WO static A2 base address. As A1.
F02228 A2_FLAGS WO static A2 control flags. As A1.
F0222C A2_MASK WO static A2 window address mask. This is used to give

a bit-wise mask of the pixel pointer. This
causes the pointer to wrap within a pre-
defined rectangle.

F02230 A2_PIXEL WO dynamic A2 pixel pointer. As A1.
F02234 A2_STEP WO dynamic A2 step integer part. As A1.
F02238 BLIT_CMD WO� dynamic Blitter command register. Control bits here

control what operation the blitter performs,
and a write to this register initiates blitter
operation.

F02238 BLIT_STAT RO N/A Blitter status register. Allows the blitter to be
polled for completion and status.

F0223C BLIT_CNT WO� dynamic† The blitter inner and outer loop counter
values. These control the size of the blit
operation.

F02240 BLIT_SRCD WO static unless
SRCEN,
SRCENX or
GOURD

Source data, or computed intensity fractional
parts. The data registers are all sixty-four bit
locations.

F02248 BLIT_DSTD WO static unless
DSTEN

Destination data.

F02250 BLIT_DSTZ WO static unless
DSTENZ

Destination Z.

F02258 BLIT_SRCZ1 WO static unless
SRCENZ or
GOURZ

Source Z1, or computed Z integer parts.

F02260 BLIT_SRCZ2 WO static unless
SRCENZ or
GOURZ

Source Z2, or computed Z fractional parts.

F02268 BLIT_PATD WO static unless
GOURD

Pattern data, or computed intensity integer
parts.

F02270 BLIT_IINC WO� static Intensity increment

F02274 BLIT_ZINC WO� static Z increment
F02278 BLIT_STOP WO static Collision stop control.
F0227C BLIT_I0 WO static unless

GOURD §
Initial intensity 0. These four registers are
alternative views of the pattern and source
data registers, and each corresponds to a
16.16 bit initial intensity value. #

F02280 BLIT_I1 WO static unless
GOURD §

Initial intensity 1.

F02284 BLIT_I2 WO static unless
GOURD §

Initial intensity 2.

F02288 BLIT_I3 WO static unless
GOURD §

Initial intensity 3.

F0228C BLIT_Z0 WO static unless
GOURZ §

Initial Z 0.These four registers are alternative
views of the source Z registers, and each
corresponds to a 16.16 bit initial Z value. #

F02290 BLIT_Z1 WO static unless
GOURZ §

Initial Z 1.

F02294 BLIT_Z2 WO static unless
GOURZ §

Initial Z 2.

F02298 BLIT_Z3 WO static unless
GOURZ §

Initial Z 3.

F0229C BLIT_FINNE
R

WO� dynamic† The low sixteen bits of this register
corresponds to the fractional part of the inner
counter, and the high bits are the extended
command bits.

F022A0 BLIT_IDELTA WO� dynamic† This 16.16 bit register is the value that may be
added to the inner counter initial value after
each pass through the inner loop.

F022A4 A1_XSD WO� static This 16.16 bit register contains the A1 X step
delta value.

F022A8 A1_YSD WO� static This 16.16 bit register contains the A1 Y step
delta value.

F022AC BLIT_ISTEP WO� dynamic† Intensity step value. This 16.16 bit value may
be added to the intensity values after each
pass through the inner loop.

F022B0 BLIT_ISD WO� static Intensity step value delta. This 16.16 bit value
may be added to the intensity step value after
each pass through the inner loop.

F022B4 BLIT_ZSTEP WO� dynamic† Z step value. This 16.16 bit value may be
added to the Z values after each pass through
the inner loop.

F022B8 BLIT_ZSD WO� static Z step value delta. This 16.16 bit value may
be added to the Z step value after each pass
through the inner loop.

F022BC BLIT_X0 WO dynamic § Texture X address pointer 0. These are 16.16
bit values. #

F022C0 BLIT_X1 WO dynamic § Texture X address pointer 1
F022C4 BLIT_X2 WO dynamic § Texture X address pointer 2
F022C8 BLIT_X3 WO dynamic § Texture X address pointer 3
F022CC BLIT_Y0 WO dynamic § Texture Y address pointer 0 #
F022D0 BLIT_Y1 WO dynamic § Texture Y address pointer 1
F022D4 BLIT_Y2 WO dynamic § Texture Y address pointer 2
F022D8 BLIT_Y3 WO dynamic § Texture Y address pointer 3
F022DC BLIT_XINC WO� static Texture X inner loop increment. This is the

amount added to the X pointer after each pixel
is drawn in the inner loop.

F022E0 BLIT_XSTEP WO� dynamic† Texture X outer loop step
F022E4 BLIT_XSD WO� static Texture X outer loop step delta. This is added

to the step value on each pass through the
outer loop.

F022E8 BLIT_YINC WO� static Texture Y inner loop increment. This is the
amount added to the Y pointer after each pixel
is drawn in the inner loop.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 53

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

F022EC BLIT_YSTEP WO� dynamic† Texture Y outer loop step. When POLYGON
is set this is the initial texture X pointer.

F022F0 BLIT_YSD WO� static Texture Y outer loop step delta. This is added
to the step value on each pass through the
outer loop.

F022F4 BLIT_TBASE WO� static Texture base address
F022F8 BLIT_IINCX WO� static Alternate intensity increment register, this is

an 11.16 bit value which affects only the
intensity field.

F022FC A1_MASK WO static A1 window address mask. This is used to give
a bit-wise mask of the pixel pointer. This
causes the pointer to wrap within a pre-
defined rectangle.

F02300 A2_CLIP WO static A2 clipping window size. The gives the X and
Y size of a window for A2 to clip to. X and Y
pointer values outside this window will not
cause write cycles if this function is enabled.

F02304 A1_X WO� dynamic† This gives an alternate view of the X portions
of the A1 pixel pointer and its fractional parts,
and allows these to be written as a single
16.16 bit integer.

F02308 A1_Y WO� dynamic† This gives an alternate view of the Y portions
of the A1 pixel pointer and its fractional parts,
and allows these to be written as a single
16.16 bit integer.

F0230C A2_X WO dynamic The bottom 16 bits of this register give an
alternate means if initialising the X portion of
the A2 pixel pointer. (These are not the same
as A1)

F02310 A2_Y WO dynamic The bottom 16 bits of this register give an
alternate means if initialising the Y portion of
the A2 pixel pointer.

F02314 A1_XSTEP WO� dynamic†‡ This gives an alternate view of the X portions
of the A1 step value and its fractional parts,
and allows these to be written as a single
16.16 bit integer.

F02318 A1_YSTEP WO� dynamic†‡ This gives an alternate view of the Y portions
of the A1 step value and its fractional parts,
and allows these to be written as a single
16.16 bit integer.

F0231C BLIT_COLOR WO� static This allows the CRY color fields of the pattern
data to be updated as a single operation. Bits
eight to fifteen of this register will update the
color field of all four pixels in the pattern data
register. Note that this is double-buffered
unlike the pattern data itself.
This register also specifies the static mixing
colour for mixing with texture using Gouraud
intensity to control the mix. When used for this
the colour is specified in bits zero to fifteen.
See below.
Mixer control bits are specified here.

F02320 BLIT_TXTD WO static unless
TEXTEN

The texture data registers may be written to
allow some mixing effects without reading
texture data. This is a sixty-four bit register.

F02400 BLIT_TCLUT WO static Texture CLUT (16 words)
F04000 TXT_RAM RW static Blitter texture RAM, 2048 x 32 bits
F06000 TXT_ROM RW non-volatile Blitter texture ROM, 2048 x 32 bits

� These registers are double-buffered. This means that they may be written to while the blitter is
still active performing the previous blit operation. The buffer which is written to is transferred
into the main register when the next blitter command is written.

WO These registers are write-only. They may only be written to, their contents are not visible.

RO These registers are read-only. They may be read from, but not modified.

RW These registers may be written to and read from. Their contents may be modified as the result
of blitter operation.

† Although these registers are dynamic, i.e. they are modified by the blitter, the double-buffer
will restore them automatically to the previously written value, so they may be treated as static
if you wish the same initial value to be re-used on the next blit.

‡ These registers are only dynamic if POLYGON is set.

§ These registers are not normally written to as part of a blit operation, as the blitter can
initialise them automatically if DATINIT is set.

0 is aligned with bit 0 and so is the right-most for big-endian system (like the Jaguar console),
and the left-most for a little endian system. You may therefore wish to consider the register at
the highest address to be register 0 for a big-endian system.

Address Generation

The address generator generates an address within a window of pixels. A window is a packed array of
pixels in memory, and may well be the data associated with an Object Processor object. A window is
described by its base address and width. A pointer into this window is set up for the Blitter start position,
and is programmed in terms of its X and Y address. The ability to program the address generator in pixel
address terms considerably simplifies the task of preparing Blitter commands.

In addition to these registers, various other registers contain specific values to allow considerable
flexibility in how the pointers are modified during Blitter operations.

The Blitter has two address generation units, used for the source and destination addresses of copy
operations, etc. The two address generators are called A1 and A2. A1 is normally the destination address
register and A2 the source, although these roles may be reversed. A1 is more sophisticated in its address
generation capabilities than A2.

Windows

All notions of address within the Blitter correspond with the concept of a window. A window is a rectangle
of pixels, stored in memory as a linear array of packed phrases. A window is described by a base register,
and has a width and height, both in pixels. A set of flags describe the size of those pixels, their physical
layout in memory, and various aspects of how the pointer is updated.

The address itself is generated from a window pointer. This has an X and Y value, and again is in pixels.
The pointer may point to areas outside the window, and both pointers support hardware clipping of
addresses outside the window.

Address Generation

The X and Y pointers are sixteen bit values. However, the address generation mechanism will only
generate valid addresses for Y values in the range 0-4095, i.e. it treats Y values as 12 bit unsigned
values. The higher order bits of Y are ignored. X is treated as an unsigned 16 bit value, but only values
from 0-32767 are valid in the blitter generally.

The address generator derives the window width from a very simple six bit floating-point format. The width
value has a four bit unsigned exponent, and a three bit mantissa, whose top bit is implicit, and which has
the point after the implicit top bit. This is similar to a cut down version of the IEEE single precision format
without the sign bit. It must give a whole number of phrases in the current pixel size. Valid exponent
values are in the range 0-11.

For example, a window width of 640 is 1010000000 binary, i.e. 1.01 x 2^9. Therefore the mantissa takes
the value 01 (implicit top bit), and the exponent 1001. The width is therefore 1001 01 in binary.

Note that there is a window bounds clipping mechanism for the A1 pointer, which treats the X and Y as
signed sixteen bit values. This is described elsewhere.

Pointer Updating

Both Blitter address generators can update their pointers so that they describe a raster scan over a
rectangle. Along a scan line, the pointer may be updated either by one pixel or to the next phrase
boundary, depending on how the Blitter is currently operating. Refer to the Data Path section for further
details.

At the end of a scan line, the pointer is updated by a step value, which is the distance in X and Y to the
start of the next scan line. This action of scan across the block, then step to the next start, is controlled by

Page 54 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

the Blitter's inner and outer control loops, the inner loop traversing a scan line, and the outer loop adding
the step value. Thus the inner loop length is the block width, and the outer loop length the block height.

In addition to these modes, both address registers have certain special modes.

Either pointer may have a Boolean mask applied. This is logically ANDed with the pointer, so that the
pointers may not exceed the bounds of a rectangle, whose sides are a power of two pixels long. This is
intended to repeat a source texture or pattern over a larger destination area, e.g. filling a wall with a
repeated brick pattern

A1 supports address updates based on a Digital Differential Analyzer. This technique produces
successive address by adding an increment to the pointers, both of which have integer and fractional
parts, and is used in particular for line-drawing and rotating images.

The pointer and increment of A1, in both X and Y, have sixteen bit integer parts and sixteen bit fractional
parts. The step value used on the outer loop address update also has integer and fractional parts.

Data Path

The Blitter has a sixty-four bit data path, with a variety of registers. It can be used to process entire
phrases at once, or one pixel at a time. Pixels may the one, two, four, eight, sixteen or thirty-two bits wide,
and are always stored in a packed manner.

When writing or copying pixels, arbitrary alignment of the source and destination data is allowed, and the
Blitter aligns the source to match the destination data when required.

When transferring phrases only pixels of eight bits or larger can be processed. The source and
destination address pointers do not need to be aligned to the same point in a phrase, the Blitter will
automatically align the source to the destination. If two source phrase must be read before a destination
phrase can be written, then the SRCENX flag must be set to ensure that enough source data is fetched
for the blit to operate correctly.

There are therefore two source data registers, to provide current source and previous source for
alignment. There is also a destination data register, which can be logically combined with the source, and
is also used to restore the destination data area when only parts of it are updated.

There is a parallel mechanism for Z data, used for Z-buffering. This allows the depth of the data about to
be written to be compared with the depth of the data already present on the screen, and the write of the
new data inhibited if the data already present has a higher priority. This applies to sixteen bit pixel mode
only.

There are therefore two source Z registers and a destination Z register.

Write Data

Write data may come from any of the following sources:

• the pattern data register
• the logic function unit
• computed Gouraud shaded data
• texture unit data
• shaded texture data
• the data adder

The default is the LFU output. The ADDDSEL flag selects the data adder output, PATDSEL selects the
pattern register output of the pattern data multiplexer. The PDSEL bits then determine if the texture data,
pattern data or the output of the multiplicative mixing unit, which is used for shading texture data, is
selected.

Write Z may come from

• source Z
• computed Z

The GOURZ flag selects computed Z data.

Overriding both these selections is a mechanism to write back unchanged destination data. If a mode is
enabled where data may be inhibited, e.g. bit-to-byte expansion, or Z buffering, then a pre-read of the
destination data should be performed. This also applies to pixel sizes of less than eight bits.

The data paths which control the generation of write data are given in the simplified diagram below. This
shows the precedence of the various control bits.

Destination Data
Initialised and loaded by DSTEN

Source Data Registers and Shifter
Initialised and loaded by SRCEN

Pattern Data / I registers
Initialised and updated by GOURD

Data output from
Texture Unit

4 to 1 MultiplexerPDSEL0-1

Clipping Unit for
saturation

0 = pattern data
1 = texture data
2 = extended precision pattern (with saturation)
3 = weighted average unit output

Logic Function Unit

LFU_FUNC 0-3

3 to 1 Multiplexer

Write Data

PATDSEL and ADDDSEL

A B

(F*A) + ((1-F)*B)
F

2 to 1 Mux2 to 1 Mux

Color Data Register

2 to 1 Mux
MIXSEL0-2

Adder output

The clipping unit on the pattern data takes the extended precision intensity data fields and clips those to
eight bits.

The multiplicative mixing unit performs the weighted average function shown. The A and B inputs, and the
mixing control input F, may all be switched between different inputs to allow a variety of modes. These
include:

1. Mix texture data with a background color using the computed intensity to control the mix
2. Do multiplicative Gouraud shading by mixing two colours, the texture data and the color register,

according to the computed intensity. This allows shading in CRY or RGB16 modes, and offers a
choice between shading to black or shading to white.

3. Translucent or anti-aliased edge texture mapping by mixing texture with the destination, with the
source data providing a mix map (this technique is also known as alpha shading, and the source data
is the alpha buffer).

4. Mixing two images from the source and destination fields, using the intensity to control the mix (the
intensity is constant in this mode).

5. Computed translucency, mixing the texture data with the destination according to the computed
intensity.

The adder output is the sum of the source and destination data, and is selected as the output data by
setting ADDDSEL.

This diagram does not show the adders used for performing the Gouraud data and Z-buffer calculation,
the Z-data path, or the output mask control..

Data Comparators

There are three data comparators available within the Blitter. These are:

• The bit comparator. This is used for bit to pixel expansion, and selects a bit or group of bits
from the source data register, using a counter which is cleared every time the inner loop is
entered. The bit is then used to control whether a pixel is written at the current location.

• The Z comparator. This is used in 16 bit pixel mode to compare the 16 bit un-signed integer Z
attribute of a pixel on the screen, the destination Z, with that about to be written, the source Z,
and to prevent the write operation if the pixel on the screen has a higher priority.

• The data comparator. This is used to provide a means to make block copies with transparent
colours, and to help with flood fill by performing searches. It compares pixel values in either 8

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 55

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

or 16 bit pixel modes. It normally compares the source data register with the pattern data
register, but it may also compare destination data with the pattern data.

The comparators may be used to achieve three effects:

• When painting pixels one at a time a comparator output can be used to inhibit the write of a
pixel, leaving the previous value unchanged.

• When painting pixels a phrase at a time, the comparator outputs can force destination data to
be written back. If this has been previously read then the data will be left unchanged, if not
then a background colour can be used, stored in the destination data register

• The action of the Blitter can be stopped altogether. This may be used for collision detection,
searching, etc.

Note that the bit comparator can only produce a mask to operate over an entire phrase in 8 bit pixel
mode.

Bus Interface

The Blitter accesses memory through the 64 bit co-processor bus, and takes full advantage of the width
and high-speed of this bus. The Blitter will normally cycle this bus at a rate limited only by the speed of the
external memory, although there is a one clock cycle overhead when turning round from a read to a write
transfer.

All external memory is viewed by the Blitter as being phrase wide - if the physical layout is narrower then
the memory controller expands the transfer into the appropriate number of transfers.

The Blitter requests the bus at the start of an operation, and will not stop requesting it until the entire
operation is complete. As described elsewhere, higher priority bus masters can request and be granted
the bus during a Blitter operation, and this will suspend Blitter operation until the higher priority operation
has released the bus.

Controlling State Machines

These state machines are the “program” that the blitter runs. You can think of them as two nested f or
loops, the outer loop is generally passed though once for each scan line of the blit, the inner loop is
passed through once for each pixel or each phrase of the blit.

The state diagrams may look hard to follow, and you probably need never examine them in any detail, but
they are here to give an absolute reference to what the blitter does and in what order it does it. What is
useful is the discussion of each state and what happens in it. The effect of some of the more useful
control bits, such as POLYGON and DATINIT, is made a lot clearer by understanding how they affect
these control loops.

The blitter is quite a complex piece of hardware, and it is hard to present exactly how it works in a concise
manner, but this section should give some insight into what is going on.

Outer Loop

The Blitter outer loop control state machine is represented by this pseudo-code:

i dl e: Blitter is idle, and will not perform any bus activity
i f GO i f DATI NI T got o i ni t _i f
 el se got o i nner

i ni t _i f : Initialise intensity fractions and texture X
got o i ni t _i i

i ni t _i i : Initialise intensity integers and texture Y
i f GOURZ got o i ni t _zf
el se got o i nner

i ni t _zf : Initialise Z fractions
got o i ni t _zi

i ni t _zi : Initialise Z integers
got o i nner

i nner : Run inner loop state machine (asserts step from its idle state)
i f I NDONE i f OUTER0 got o i dl e
 el se i f UPDA1F got o a1f updat e
 el se i f UPDA1 got o a1updat e
 el se i f GOURZ. POLYGON got o zf updat e

 el se i f UPDA2 got o a2updat e
 el se i f DATI NI T got o i ni t _i f
 el se r est ar t i nner

a1f updat e: Update A1 pointer fractions and more (see below)
got o a1updat e

a1updat e: Update A1 pointer integers
i f GOURZ. POLYGON got o zf updat e
el se i f UPDA2 got o a2updat e
 el se i f DATI NI T got o i ni t _i f
 el se r est ar t i nner

zf updat e: Update computed Z step fractions
got o zupdat e

zupdat e: Update computed Z step integers
i f UPDA2 got o a2updat e
el se i f DATI NI T got o i ni t _i f
 el se r est ar t i nner

a2updat e: Update A2 pointer
i f DATI NI T got o i ni t _i f
el se r est ar t i nner

i ni t _i f : Initialise 4 intensity fraction fields and 4 texture X pointers
got o i ni t _i i

i ni t _i i : Initialise 4 intensity integer fields and 4 texture Y pointers
i f GOURZ got o i ni t _zf
el se r est ar t i nner

i ni t _zf : Initialise 4 Z fraction fields
got o i ni t _zi

i ni t _zi Initialise 4 Z integer fields
r est ar t i nner

The outer loop state machine fires off the inner loop, and controls the updating process between passes
through the inner loop. States have functions as follows:

idle Blitter is off the bus, and no activity takes place.
inner Inner loop is active, read and write cycles are performed
a1fupdate A1 step fraction is added to A1 pointer fraction

POLYGON true: A1 step delta X and Y fraction parts are added to the A1 step X and Y
fraction parts (the value prior to this add is used for the step to pointer add).
POLYGON true: inner count step fraction is added to the inner count fraction part
POLYGON.GOURD true: the I fraction step is added to the computed intensity fraction
parts †
POLYGON.GOURD true: the I fraction step delta is added to the I fraction step

a1update A1 step is added to A1 pointer, with carry from the fractional add
POLYGON true: A1 step delta X and Y integer parts are added to the A1 step X and Y
integer parts, with carry from the corresponding fractional part add (again, the value prior
to this add is used for the step to pointer add).
POLYGON true: inner count step is added to the inner count, with carry
POLYGON.GOURD true: the I step is added to the computed intensities, with carry †
POLYGON.GOURD true: the I step delta is added to the I step, with carry
the texture X and Y step delta values are added to the X and Y step values.

zfupdate the Z fraction step is added to the computed Z fraction parts †
the Z fraction step delta is added to the Z fraction step

zupdate the Z step is added to the computed Zs, with carry †
the Z step delta is added to the Z step, with carry

a2update A2 step is added to the A2 pointer
init_if Initialise the fractional part of the computed intensity fields, from the increment and step

registers. The texture X integer and fractional parts can also be initialised.
init_ii Initialise the integer part of the computed intensity, and texture Y integer and fractional

parts..
init_zf Initialise the fractional part of the computed Z fields.
init_zi Initialise the integer part of the computed Z fields.

† these functions are irrelevant if the DATINIT function is enabled, which it will normally be.

All these states will complete in one clock cycle, with the exception of the idle state, which means the
blitter is quiescent; and the inner state, which takes as long as is required to complete on strip of pixels. It
is therefore possible for the blitter to spend a maximum of nine clock cycles of inactivity between passes
through the inner loop.

Page 56 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Inner Loop

The blitter inner loop state machine is represented by this pseudo-code:

i dl e: Inactive, blitter is idle or passing round outer loop
i f STEP i f SRCENX got o sr eadx
 el se i f TXTEXT got o t x t r ead
 el se i f SRCEN got o sr ead
 el se i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

sr eadx: Extra source data read
i f STEP i f SRCENZ got o szr eadx
 el se i f TXTEXT got o t x t r ead
 el se i f SRCEN got o sr ead
 el se i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

szr eadx: Extra source Z read
i f STEP i f TXTEXT got o t x t r ead
 el se got o sr ead

t x t r ead: Read external texture data
i f STEP i f SRCEN got o sr ead
 el se i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

sr ead: Source data read
i f STEP i f SRCENZ got o szr ead
 el se i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

szr ead: Source Z read
i f STEP i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

dr ead: Destination data read
i f STEP i f DSTENZ got o dzr ead
 el se got o dwr i t e

dzr ead: Dest i nat i on Z r ead
i f STEP got o dwr i t e

dwr i t e: Destination data write
i f STEP i f DSTWRZ got o dzwr i t e
 el se i f I NNER0 got o i dl e
 el se i f TXTEXT got o t x t r ead
 el se i f SRCEN got o sr ead
 el se i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

dzwr i t e: Destination Z write
i f STEP i f I NNER0 got o i dl e
 el se i f TXTEXT got o t x t r ead
 el se i f SRCEN got o sr ead
 el se i f DSTEN got o dr ead
 el se i f DSTENZ got o dzr ead
 el se got o dwr i t e

States have functions as follows:

idle Another state in the outer loop is active. No bus transfers are performed.
sreadx Extra source data read at the start of an inner loop pass.
szreadx Extra source Z read as the start of an inner loop pass.
txtread Read texture data from external memory. This state is only used for external texture.

TEXTEXT is the condition TEXTMODE=1.
sread Source data read.
szread Source Z read.
dread Destination data read.
dzread Destination Z read.
dwrite Destination write. Every pass round the inner loop must go through this state..
dzwrite Destination Z write.

The step signal is a composite decode that indicates that the inner loop may start, or that the underlying
memory interface has completed and the blitter may advance to the next memory transfer.

Register Description

The following is a list of all the externally accessible locations within the Blitter. The data registers may
only be written to while the Blitter is idle.

Address Registers

All address registers are 32 bits unless otherwise indicated. The addresses given are byte offsets from
the base of the GPU area.

A1 Base Register F02200 Write only

32 bit register containing a pointer to the base of the window pointer to by A1. This address must be
phrase aligned.

Flags Register F02204 Write only

A set of flags controlling various aspects of the A1 window and how addresses are updated.

Bit Name Description
0-1 Pitch The distance between successive phrases of pixel data in the window data

structure. Gaps may be used to provide alternate pixel maps for double-
buffering, for Z data, and for other control information. The distance between
two successive phrases of pixels is given by two to the power of this value,
with one special case; i.e. a pitch of 0 means pixel data phrases are
contiguous, 1 means 1 phrase gaps, 2 means 3 phrase gaps; but 3 means 2
phrase gaps, which may be especially useful for double-buffered Z-buffer
displays, as it allows two phrases of pixels to each phrase of Z-buffer data -
there is no need to double buffer the Z data..

2 unused
3-5 Pixel size The pixel size, where the actual pixel size is 2^n, n is the value stored here.

Values 0-5 are allowed.
6-8 Z offset This value gives the offset from a phrase of pixel data of its corresponding Z

data in phrases. Values of 0 and 7 are not used.
9-14 Width This width is distinct from the width in pixels stored in the window register,

and is the width used for address generation.
The width is a six bit floating point value in pixels, with a four bit unsigned
exponent, and a three bit mantissa, whose top bit is implicit, and which has
the point after the implicit top bit. This is similar to the IEEE single precision
format without the sign bit. It must give a whole number of phrases in the
current pixel size.
For example, a screen width of 640 encodes as 1.01 x 29, where 1.01 is a
binary number. This gives an exponent field of 9, i.e.1001, and a mantissa
field of (1)01. This is stored thus:

E3 E2 E1 E0 M1 M0

1 0 0 1 0 1

Bi t 14 13 12 11 10 9

15 Mask Enables Boolean AND masking of the A1 pointer by its window register.
16-17 X add ctrl. These control the update of the X pointer on each pass round the inner loop.

Values are:
0 Add phrase width and truncate to phrase boundary (sets phrase mode),

note that you must only use this for eight bit or larger pixels
1 Add pixel size, effectively add one
2 Add zero
3 Add the increment

18 Y add ctrl. This bit controls how the Y pointer is updated within the inner loop. It is
overridden by the X control bits if they are in add increment mode.
4 Add zero
5 Add one

19 X sign This bit may be set in conjunction with the X add pixel size mode to make the
operation subtract pixel size. It should not be set with other modes.

20 Y sign Makes the Y add one mode into Y subtract one.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 57

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

21 Step load When this bit is set, the step register is loaded directly into the pointer on
each pass round the outer loop, instead of being added to it. This is used for
polygon drawing mode. The UPDA1 flag must be set, the UPDA1F flag will
usually be set too.

A1 Clipping Window Size F02208 Write only

This register contains the size in pixels, and may be used for clipping writes, so that if the pointer leaves
the window bounds no write is performed. The width is an unsigned fifteen bit value in the low word, the
height an unsigned fifteen bit value in the high word. The top bit of each word is ignored.

The window origin (0,0) is always at the top left hand corner of the window, and so clipping is performed
when the pointer values are negative, or when the pointer values are greater than or equal to these
values. If the desired clip rectangle does not have its top left corner at the window origin, then the window
base register should be modified to make it the top left corner of the clip rectangle.

In pixel mode clipping will occur when the A1 pointer goes outside the clipping window if A1 is being used
as either the source or the destination pointer. In phrase mode, however, clipping will only work correctly
when A1 is the destination pointer (DSTA2 is not set).

A1 Window Mask F022FC Write only

This register is used as the window size only in the sense that it may be used to AND mask the pointer
register when the Mask flag is set. This causes the address to wrap within a rectangular area and may be
used to give fill patterns.

A1 Window Pixel Pointer F0220C Read/Write

This register contains the X (low word) and Y (high word) pointers onto the window, and are the location
where the next pixel will be written. They are sixteen bit signed values. If X and Y values go out of range
positively then they will advance through memory (X will wrap onto the next line, Y will go off the end of
the window). Only X values in the range 0-32767 and Y values in the range 0-4095 will produce valid
addresses from the address generator, values outside this range are for clipping purposes only.

A1 Step Value F02210 Write only

The step register contains two signed sixteen bit values, which are the X step (low word) and Y step (high
word). These may be added to the X and Y pointer on each pass round the outer loop, between passes
through the inner loop.

When calculating the step value for phrase-mode blits, note that the X pointer will be left pointing at the
start of the first phrase not written by the blit.

If the step load bit is set in the A1 flags register, then this register is loaded into the pointer in the outer
loop (when the UPDA1 bit is set) instead of being added to it.

A1 Step Fraction Value F02214 Write only

The step fraction register may be added to the fractional parts of the A1 pointer in the same manner as
the step value. This is used when A1 is being used to scan over the source of a scaled or rotated image.

If the step load bit is set in the A1 flags register, then this register is loaded into the fractional parts of the
pointer in the outer loop (when the UPDA1F bit is set) instead of being added to it.

A1 Window Pixel Pointer Fraction F02218 Read/Write

This register contains the fractional parts of the pointer when A1 is being used to implement a D.D.A.
based address generator, for line-drawing, etc. The X part is in the low word, and the Y part in the high
word.

A1 Pixel Pointer Increment F0221C Write only

The increment is added to the pointer value within the inner loop when the address update is in add
increment mode. This register contains the two 16 bit signed integer parts of the increment, the X part is
in the low word, the Y part in the high word.

A1 Pixel Pointer Increment Fraction F02220 Write only

This is the fractional parts of the increment described above.

A1 X Step Delta F022A4 Write only

This register holds the 16.16 bit value which may be added to the A1 step X value on each pass through
the outer loop if the POLYGON and UPDA1 and UPDA1F bits are set.

A1 Y Step Delta F022A8 Write only

This register holds the 16.16 bit value which may be added to the A1 step Y value on each pass through
the outer loop if the POLYGON and UPDA1 and UPDA1F bits are set.

A2 Base Register F02224 Write only

32 bit register containing a pointer to the base of the window pointer to by A2. This address must be
phrase aligned.

A2 Flags Register F02228 Write only

A set of flags controlling various aspects of the A2 window and how addresses are updated.

Bits Name Description
0-1 Pitch As A1.
2 unused
3-5 Pixel size As A1.
6-8 Z offset As A1.
9-14 Width As A1.
15 Mask Enables Boolean AND masking of the A2 pointer by its window register.
16-17 X add ctrl. These control the update of the X pointer on each pass round the inner loop.

Values are:
0 Add phrase width (truncate to phrase boundary), note that you may only

use this for eight bit or larger pixels
1 Add pixel size (effectively add one)
2 Add zero

18 Y add ctrl. This bit controls how the Y pointer is updated within the inner loop.
3 Add zero
4 Add one

19 X sign This bit may be set in conjunction with the X add pixel size mode to make the
operation subtract pixel size. It should not be set with other modes.

20 Y sign Makes the Y add one mode into Y subtract one.
21 Step load When this bit is set, the step register is loaded directly into the pointer on

each pass round the outer loop, instead of being added to it The UPDA2 flag
must be set.

22 CLIP_A2 Enables clipping when the A2 pointer lies outside its window boundaries.
This has the effect of inhibiting destination writes within the inner loop, but
Blitter operation will continue. This is similar to the CLIP_A1 function in the
command register.

A2 Clipping Window Size F02300 Write only

This register contains the size in pixels, and may be used for clipping writes, so that if the pointer leaves
the window bounds no write is performed. The width is an unsigned fifteen bit value in the low word, the
height an unsigned fifteen bit value in the high word. The top bit of each word is ignored.

The window origin (0,0) is always at the top left hand corner of the window, and so clipping is performed
when the pointer values are negative, or when the pointer values are greater than or equal to these
values. If the desired clip rectangle does not have its top left corner at the window origin, then the window
base register should be modified to make it the top left corner of the clip rectangle.

In pixel mode clipping will occur when the A2 pointer goes outside the clipping window if A2 is being used
as either the source or the destination pointer. In phrase mode, however, clipping will only work correctly
when A2 is the destination pointer (DSTA2 is set).

A2 Window Mask F0222C Write only

This register is used as the window size only in the sense that it may be used to AND mask the pointer
register when the Mask flag is set. This causes the address to wrap within a rectangular area and may be
used to give fill patterns.

Page 58 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

A2 Window Pointer F02230 Read/Write

This register contains the X (low word) and Y (high word) pointers onto the window, and are the location
where the next pixel will be written. They are sixteen bit signed values. If X and Y values go out of range
positively then they will advance through memory (X will wrap onto the next line, Y will go off the end of
the window). Only X values in the range 0-32767 and Y values in the range 0-4095 will produce valid
addresses from the address generator, values outside this range are for clipping purposes only.

A2 Step Value F02234 Write only

The step register contains two signed sixteen bit values, which are the X step (low word) and Y step (high
word). These may be added to the X and Y pointer on each pass round the outer loop, between passes
through the inner loop.

When calculating the step value for phrase-mode blits, note that the X pointer will be left pointing at the
start of the first phrase not written by the blit.

Control Registers

Command Register F02238 Write only

This register describes the operation of the Blitter. A write to this register initiates Blitter operation, so it
should be written to last when setting up a Blitter command. Control bits are:

Bit Name Description

Bits 0-5 enable corresponding memory cycles within the inner loop. Destination write cycles are always
performed (subject to comparator control), but all other cycle types are optional.

0 SRCEN Enables a source data read as part of the inner loop operation.
1 SRCENZ Enables a source Z read as part of the inner loop operation. This bit

is ignored unless SRCEN is set.
2 SRCENX Enables an "extra" source data read at the start of an inner loop

operation. This is necessary where data has to be re-aligned, and
may also sometimes be of use in bit-to-pixel expansion. If SRCENZ
is set an extra Z read is also performed.

3 DSTEN Enables a destination data read as part of inner loop operation. This
must always be performed for pixels smaller than 8 bits, where part
of the destination data write will need to restore the data that was
previously there.

4 DSTENZ Enables a destination Z read as part of inner loop operation.
5 DSTWRZ Enables a destination Z write as part of inner loop operation.
6 CLIP_A1 Enables clipping when the A1 pointer lies outside its window

boundaries. This has the effect of inhibiting destination writes within
the inner loop, but Blitter operation will continue.

7 NOGO Diagnostic use only, prevents writes to the command register
starting the Blitter. Set to zero.

Bits 8-10 enable address updates within the outer loop. These should only be enabled when required as
there is a one clock cycle overhead per update.

8 UPDA1F Add the fractional part of the A1 step value to the fractional part of
the A1 pointer between inner loop operations in the outer loop.

9 UPDA1 Add the A1 step value to the A1 pointer between inner loop
operations in the outer loop.

10 UPDA2 Add the A2 step value to the A2 pointer between inner loop
operations in the outer loop.

11 DSTA2 Reverses the normal roles of the address registers from A1 as
destination and A2 as source to A2 as destination and A1 as source.

12 GOURD Enable Gouraud shaded data updates within inner loop, i.e. the
intensity gradient fractional part, repeated four times, is added to the
computed intensity fraction register (a.k.a. destination data), then
the intensity gradient integer part is added with the carry from the
previous add to the computed intensity value register (a.k.a. pattern
data).

13 GOURZ Enable polygon Z data updates within the inner loop, i.e. add Z
fractions to the Z fraction register (source Z 2), then add with carry
the Z integer part to the Z integers (source Z 1).

14 TOPBEN Enable carry into the top byte of the intensity integers in Gouraud
data updates (leave clear for CRY mode).

15 TOPNEN Enable carry into the top nibble of the intensity integers in Gouraud
data updates (leave clear for CRY mode).

Bits 16-17 select alternative write data – the default source is the Logic Function Unit, whose output is
controlled by the LFUFUNC bits.

16 PATDSEL Select pattern data as the write data.
17 ADDDSEL Selects the sum of source and destination data as the write data.

Note that the source data is a signed offset. Leave TOPBEN and
TOPNEN clear and the source data gives three signed offsets for
each of the CRY fields, and the intensity value will saturate. Set
TOPBEN and TOPNEN and sixteen bit saturating adds are
performed. This can be used to lighten and darken images. This
only applies to 16 bit pixels. This function is now largely obsolete
and should not be generally used, the multiplicative data mixer and
the texture unit offer more general ways of combining images.

18-20 ZMODE These bits give the conditions under which the Z comparator
generates an inhibit. Setting them all to zero disables the Z
comparator. This can only operate in 16 bit per pixel mode.
bit 0 - source less than destination
bit 1 - source equal to destination
bit 2 - source greater than destination

21-24 LFUFUNC The bits control the data produced by the logic function unit. The
output is the Boolean OR of the following minterms:
bit 0 AND (NOT source) AND (NOT destination)
bit 1 AND (NOT source) AND destination
bit 2 AND source AND (NOT destination)
bit 3 AND source AND destination
for example, source data is selected by setting 1100 (destination
terms cancel out), or the XOR of source and data is 0110.

25 CMPDST Make the pixel value comparator compare destination data with
pattern data rather than source data with pattern data.

26 BCOMPEN Enable write inhibit on the output from the bit comparator. This
works pixel by pixel in any size, but over whole phrases only on 8 bit
pixels. When operating in pixel mode then the write does not occur
unless BKGWREN is set, but in phrase mode destination data is
always written when the comparator determines that the pixel should
not be written.

27 DCOMPEN Enable write inhibit on the output from the data comparator. This
only applies to 8 bit and 16 bit per pixel modes. When operating in
pixel mode then the write does not occur unless BKGWREN is set,
but in phrase mode destination data is always written when the
comparator determines that the pixel should not be written.

28 BKGWREN When a write inhibit occurs, this flag enables the Blitter to still
perform the write, but to write back destination data. This only
applies to pixel mode, in phrase mode destination data is always
written.

29 BUSHI When set the blitter accesses the bus at the higher of its two
priorities. This allows the blitter to access the bus at a higher priority
than the object processor, and may speed up operations that involve
a lot of short blits such as polygon drawing. Setting BUSHI across
long blits may disturb the screen.

30 SRCSHADE This bit uses the IINC register to modify the intensity of data read
from the source address, and may be used to lighten or darken
images. It may be used in conjunction with GOURZ, but not
GOURD. The data read from the source is modified, so source data
should be selected using the LFU as the write data. This is
particularly intended for performing flat shading on texture mapped
surfaces. This function is now obsolete and should NOT be used,
use the sum of the texture data stream and the intensity/pattern
values to flat shade or Gouraud shade textures.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 59

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

31 POLYGON Enables blitter polygon drawing mode. The outer loop gains a
variety of additional arithmetic operations to prepare the blitter for
the next scan line of the polygon. See the discussion of polygon
drawing below.

Status Register F02238 Read only

Bit Name Description
0 IDLE When set, the blitter is completely idle and its last bus transaction is

completed.
1 STOPPED When set, the blitter is stopped in its collision detection mode - see

the collision control register below.
2 PENDING A double-buffered blitter command is pending and the previous blit

is still in operation, so another blitter command cannot yet be
written.

3 inner SREADX Diagnostic only.
4 inner SZREADX Diagnostic only.
5 inner SREAD Diagnostic only.
6 inner SZREAD Diagnostic only.
7 inner DREAD Diagnostic only.
8 inner DZREAD Diagnostic only.
9 inner DWRITE Diagnostic only.
10 inner DZWRITE Diagnostic only.
11 outer IDLE Diagnostic only.
12 outer INNER Diagnostic only.
13 outer A1FUPDATE Diagnostic only.
14 outer A1UPDATE Diagnostic only.
15 outer A2UPDATE Diagnostic only.
16-31 inner count Diagnostic only.

Inner and Outer Counters Register F0223C Write only

The low word is the number of iterations of the inner loop operation. This is a sixteen bit value which
reloads the inner loop counter on each entry to the inner loop.

The high word is the number of iterations of the outer loop. This is a sixteen bit value which is loaded
directly into the outer loop counter.

The counters both accept values in the range 1 to 65536 (encoded as 0).

Inner Count Fraction & Extended Control F0229C Write only

The low 16 bits of this register give the fractional part of the inner counter reload value. This is used in
polygon mode, when the inner count can change by a non-integer amount on each scan line. The high
sixteen bits are used to extend the blitter command set.

Bit Name Description
0-15 FINNER The fractional part of the inner counter reload value.
16 DATINIT Enables the initialisation of all four of the I and Z data fields from the

I and Z step register and increment values. The step value is taken
to be the value of the first pixel in the scan line, and the increment is
added to it or subtracted from it to fill in all four 16 bit pixel fields in
the intensity integer and fraction registers, and in the Z integer and
fraction fields. If GOURZ is not set only the I field is initialised.
This function can also apply to texture mapping.

17-18 TEXTMODE Texture mapping control modes:
0 Disable texture mapping unit
1 Fetch textures from external memory (TEXTEXT)
2 Fetch textures from a single internal texture map
3 Fetch textures from a duplicated internal texture map

(TEXTDBL)
In modes 2 & 3 texture fetches are from internal memory even if the
texture base address is not in internal memory.

19 INTERP Enable the texture interpolation unit for anti-aliased textures.

20-22 TEXTXS0-2 Texture width, encoded as follows:
0 32 pixels
1 64 pixels
2 128 pixels
3 256 pixels
4 512 pixels
5 1024 pixels
6 2048 pixels

23-25 TEXTYS0-2 Texture height, encoded in the same way as the texture width.
26 TEXTNIB Texture is packed as nibbles, not as words. It is expanded by a

small blitter palette.
27 TEXTMIR When this bit is set, textures are mirrored as they wrap. For

example, if the texture width is 32 pixels, then when bit 5 of the X
pointer is set, the texture X address is two’s complemented.

28 TEXTRGB This bit flips the interpolation unit and multiplicative data mixers
between CRY and RGB16 modes. When this is set, the pixels are
interpolated and mixed as RGB, if clear then they are CRY. This is
used in conjunction with the INTERP bit when anti-aliasing textures.

29 EXT_INT Extended precision intensity calculations. When this bit is set all
intensity calculations are performed at 11.16 bit precision as signed
numbers, and the saturation is performed as the pixel values are
output. See notes below.

30-31 PDSEL0-1 These bits select what appears as pattern data in the data unit. The
output of this is selected when the PATDSEL bit is enabled.
Functions are as follows:
0 Pattern data
1 Texture data
2 Extended precision pattern data (use this if EXT_INT is set

instead of 0)
3 Multiplicative mix of texture data and the color register (or

destination data) with the saturated extended precision intensity
controlling the mix.

Inner Counter Delta F022A0 Write only

This value is added to the inner counter reload value after each pass through the inner loop if POLYGON
and A1UPDATE are both set. It is a 16.16 bit value. The inner counter reload value has a fractional part
when this is enabled, the integer part is in the low word of the counters register and the fraction part is in
the low word of the inner counter fraction and extended control register. This odd arrangement is for
historical reasons.

To avoid ragged right hand edges on the polygon, the fractional part of the A1 X pointer is also added to
the reload value before the counter itself is loaded. This only occurs when POLYGON is set.

Data Registers

All data registers are sixty-four bits, unless otherwise noted.

Source Data Register F02240 Write only

The source data may be pre-loaded with data for bit-to-byte expansion. The source data register also
serves to hold the four sixteen bit fractional parts of intensity when computing Gouraud shaded intensity.

Destination Data Register F02248 Write only

This 64 bit register holds the destination data - which may be either read in the inner loop to allow
unmodified pixels to be written back correctly when in phrase-mode, or it may be used to give background
or paper colours, if it is not read.

Destination Z Register F02250 Write only

This 64 bit register holds the destination Z value, and may be used as the data register.

Page 60 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Source Z Register 1 F02258 Write only

The source Z register 1 is also used to hold the four integer parts of computed Z.

Source Z Register 2 F02260 Write only

The source Z register 2 is also used to hold the four fraction parts of computed Z.

Pattern Data Register F02268 Write only

The pattern data register also serves to hold the computed intensity integer parts and their associated
colours.

Intensity Increment F02270 Write only

This thirty-two bit register holds the integer and fractional parts of the intensity increment used for
Gouraud shading. Note that the top eight bits will modify the colour value, and should therefore normally
be left set to zero.

Z Increment F02274 Write only

This thirty-two bit register holds the integer and fractional parts of the Z increment used for computed Z
polygon drawing.

Collision control and Mode F02278 Write only

This registers allows the Blitter to be stopped when an inner loop write inhibit occurs. Blitter stop will occur
in painting in pixel-by-pixel mode (X add control is 1), BKGWREN is clear, and one of BCOMPEN,
DCOMPEN or ZMODE0-2 is set, along with the matching condition.

The Blitter operation may at that point be resumed or aborted.

Bit Name Description
0 RESUME Writing a one to this bit when the Blitter has stopped under the

above conditions will cause the Blitter to resume operations. Writing
a zero has no effect.

1 ABORT Writing a one to this bit when the Blitter has stopped under the
above conditions will cause the Blitter to terminate the current
operation and revert to its idle state. Writing a zero has no effect.

2 STOPEN Set this bit to enable Blitter collision stops. Clear it to disable them.
3 FIX_BUGS This bit should be set to fix the following bugs, which are enabled by

default for compatibility reasons:
• The A1 ADDY control bit affected both address registers. It

affects only A1 and the A2 one now has the required effect
when fixed.

• Incorrect masking of the phrase which corresponds to the right
hand edge of the A1 clip window.

4 INT_DBUF When this bit is set, the blitter interrupt will occur when the double
buffer can accept another command. This means that after the first
blitter command is written, an interrupt will be generated
immediately, and the double-buffer may be filled, interrupts will then
occur each time the double buffer is emptied.
When this bit is clear, the blitter interrupt occurs when blitter
operation has completed.

Intensity 0 F0227C Write only
Intensity 1 F02280 Write only
Intensity 2 F02284 Write only
Intensity 3 F02288 Write only

These four registers provide an alternate view of the computed intensity integer parts (pattern data) and
computed intensity fractional parts (source data) registers. They are a convenient way of updating the
intensity values for Gouraud shading. Each register is a 24 bit value (8.16 bit number), with the top eight
bits unused, that modifies the corresponding fields of the computed intensity integer and fractional part

registers. Note that the colour fields in the pattern data registers are unaffected by writes to these
registers.

Z 0 F0228C Write only
Z 1 F02290 Write only
Z 2 F02294 Write only
Z 3 F02298 Write only

These registers are analogous to the intensity registers, and are for Z buffer operation. They affect the
corresponding parts of the computed Z integer (source Z1) and computed Z fraction (source Z2) registers.
They are 32 bit values (16.16 bit numbers).

Intensity Step F022AC Write only

This register gives the step value for intensity. This is either added to the intensity values in the outer
loop, or may be used, if DATINIT is set, to reload the four computed intensity values, suitable modified by
the increment value. See the discussion on polygons below.

Intensity Step Delta F022B0 Write Only

This register is added to the intensity step value on each pass through the outer loop, the POLYGON,
GOURD, UPDA1 and UPDA1F bits all have to be set for this to operate correctly.

Z Step F022B4 Write only

This register gives the step value for Z. This is either added to the Z values in the outer loop, or may be
used, if DATINIT is set, to reload the four computed Z values, suitable modified by the Z increment value.
See the discussion on polygons below.

Z Step Delta F022B8 Write Only

This register is added to the Z step value on each pass through the outer loop, the POLYGON, GOURZ,
UPDA1 and UPDA1F bits all have to be set for this to operate correctly.

Color Data and Data Path Control F0231C Write Only

This double buffered register allows the CRY color fields of the pattern data to be updated as a single
operation. Bits eight to fifteen of this register will update the color field of all four pixels in the pattern data
register. Note that this is double-buffered unlike the pattern data itself.
This register also specifies the static mixing colour for mixing with texture using Gouraud intensity to
control the mix. When used for this the colour is specified in bits zero to fifteen, and can be either CRY or
RGB16.

The higher bits of this register control the blitter data path, as follows.

Bit Name Description
0-7 COLOR0-7 Specifies the low 8 bits of the background color value
8-15 COLOR8-15 Specifies the top 8 bits of the background color value, and the

provide a double-buffered means of initialising the CRY color fields
of the pattern data registers for Gouraud shading.

16 MIXSEL0 Controls the input to operand A of the multiplicative data mixer.
When this bits is clear texture data is selected, when set the source
data is selected.

17 MIXSEL1 Controls the input to operand B of the multiplicative data mixer.
When this bit is clear the background color is selected (repeated
four times over the phrase), when this bit is set the destination data
is selected.

18 MIXSEL2 Control the input to the mix control input F of the multiplicative data
mixer. When this bit is clear the saturated extended precision
intensity fields are selected, when it is set the bottom byte of each
word of the source data is used as the mix control.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 61

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Texture Unit Control Registers

Texture X address pointer 0-3 F022BC-C8 Write Only
Texture Y address pointer 0-3 F022CC-D8 Write Only

These four register pairs correspond to the four X and Y pointers required to simultaneously fetch four
texture map source pixels when generating a phrase of destination data. If phrase mode is not set, the
only pointer 0 is used, unless the texture is being anti-aliased in which case all four are required to index
the four corners of the square.

In texture mapped polygon generation, these registers will not normally be written to, as they are
automatically initialised from the texture X and Y step registers. Set POLYGON and DATINIT.

These are 11.16 bit values, allowing textures up to 2048 pixels on a side. The address pointers wrap if
they overflow or underflow.

Texture X increment F022DC Write Only
Texture Y increment F022E8 Write Only

This register pair give the amount added to the texture X and Y pointers after each pass through the inner
loop. They therefore control the rotation and scaling occurring within the inner loop. Remember that the
rotation and scaling are applied to the source, so that making these values smaller will increase the
magnification of the texture.

When the blitter is running in phrase mode, then the value written here should be four times the pixel
increment, because each address pointer has to be advanced four pixels.

These are 11.16 bit values.

Texture X step F022E0 Write Only
Texture Y step F022EC Write Only

When DATINIT is not set, this register pair give the step added the pointer in the outer loop.

However, normally it will be set, in which case the name step is a misnomer. When DATINIT is set this is
the value used to initialise the texture address pointers at the start of each pass through the inner loop.
The step delta is added to these registers after each pass through the inner loop, so that these values
follow a line down the left hand edge of the polygon.

These are 11.16 bit values.

Texture X step delta F022E4 Write Only
Texture Y step delta F022F0 Write Only

These registers give the value added to the step registers on each pass round the outer loop, if UPDA1 is
set. These registers should give the gradient, in texture space, of the “left” hand side of the polygon in
destination terms.

Modes of Operation

This section discusses some of the typical modes of operation of the Blitter. It is by no means a complete
guide to all possible modes, but will show how to do certain common operations. This is the best way to
learn how to use the Blitter.

Throughout this section, flags in flags registers that are not mentioned should always be set to zero.
Registers that are not mentioned need not be set up.

Block Moves

The simplest of all Blitter operations is a block move, copying one area of memory onto another. The
Blitter will perform this operation one phrase at a time, and it is therefore a very rapid way of transferring
data.

The source address of the data should be stored in the A2 base register, and the destination address in
the A1 base register. If these are not phrase aligned addresses then they should be rounded down to a

phrase boundary, and the offset (in the pixel size set) from the phrase boundary written into the X pointer.
The Y pointer should be set to zero.

The length of the block should be stored in the inner counter - the number represents the number of
pixels, so the largest block that can be copied is 32767 pixels, where 32 bit pixels are set this is 128K. For
smaller blocks it is usually easier to work in bytes. The outer counter should be set to one.

The Blitter needs to be told how to update the pointers after each read and write cycle, so the add control
bits are set to zero to indicate phrase mode in both address flags registers.

Having set these, a command is stored in the command register, with the SRCEN bit set to enable source
reads, and the LFUFUNC bits set to 1100 to select source data. If the source is not phrase aligned, then
the SRCENX bit must be set.

Rectangle Moves
Rectangle moves are very like block moves, but use a two-dimensional data set rather than the one-
dimension of a block operation. This brings in various new concepts.

A two-dimensional array of pixels is stored in memory as a linear array of phrases. This will usually be the
data field of a bit-mapped object. The Blitter has to know the width of this window of pixels. As an address
in the window, in pixel terms, is given by the X pointer plus the width times the Y pointer; a multiply
operation is necessary to compute the address. To avoid the need for a hardware multiplier in the Blitter
address generator, the width is rather strangely encoded.

Blitter window width is expressed as a floating-point number. The actual value has a four bit exponent and
a three bit mantissa, whose top bit is implicit. This allows Blitter window widths to be any value whose
binary form has no more than three significant digits followed by some number of zeroes.

As an example, here are how various window widths encode:

Value Binary Floating-point Encoded
20 000000010100 1.01 x 2^4 0100 01
80 000001010000 1.01 x 2^6 0110 01
128 000010000000 1.00 x 2^7 0111 00
640 001010000000 1.01 x 2^9 1001 01
3584 111000000000 1.11 x 2^11 1011 11

The largest width value allowed is the last value one in this table - the smallest width is one phrase in the
current pixel size. The width must always be a whole number of phrases in the current pixel size.

Rectangles are blitted like a raster scan, i.e. a line of pixels is transferred, then the pointer advances one
line and transfers the next scan line of the rectangle. This jump from the end of one line to the start of the
next is given by the step value. If pixels are being transferred one at a time, then the step value for X is
the window width minus the rectangle width. If pixels are being transferred one phrase at a time, then the
X pointer is left pointing at the start of the next phrase after the end of the block, and so the step value
should be reduced accordingly.

Clipping may be performed by the A1 address generator, and simply prevents writes occurring at
addresses outside the window boundaries, i.e. X or Y either negative or grater than the window size. The
window size is programmed in the A1 window size registers. This is not much faster than writing the
clipped pixels, so if a large number of pixels are to be clipped then it is worth performing the clipping at a
higher level.

Character Painting

Character painting is a particular example of a class of operations requiring bit to pixel expansion. As well
as character painting, this may include such things as background patterns, simple texture fills, etc.

When bit to pixel expansion is being performed, the source data is used as a bit mask. Bits are extracted
from the source data and if they are set then the corresponding pixel is painted in the currently selected
output data form, if the bit is clear then either the pixel is left unchanged, or a background colour is
written.

This allows character painting to paint the characters only, leaving the background unchanged (if the
destination data is read), or with another colour written to the 'paper' areas (pre-loaded into the destination
data register which is not read in the inner loop).

Character painting can be performed one pixel at a time in all screen modes, and can also be performed
one phrase at a time in eight bit per pixel modes.

The bit selection counter is reset every time the inner loop is left, so bit packed data patterns may be up
to eight pixels wide.

Page 62 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Image Rotation

The Blitter can rotate and scale images as a single operation.

Consider taking a rectangular image and rotating it into a window.

• The bounding rectangle of the rotated image is calculated in the destination window.

• This rectangle is then transformed into the source image co-ordinate system.

• A2 is used as the destination address register and performs a raster scan over the bounding
rectangle, pixel-by-pixel. The width and height of the blit are given by the size of this bounding
rectangle.

• A1 performs a scan over the source image, with the increment integer and fraction set up to
describe a scan over the first line of the translated bounding rectangle. The step and fraction
parts then translate it to the start of the next scan.

• Clipping is generated when A1 is outside the bounds of the source image, so that writes at A2
will only be enables when A1 lies within the bounds of the source image, clipping the rotated
form correctly.

Consider as an example, a 12 pixel square image starting at (10,10) in a window. We would like to rotate
this image clockwise by 30 degrees, make it larger by a factor of 1.3, and move it across by 30 pixels.

First it is necessary to transpose the square's co-ordinates into the target co-ordinate system. The basic
program below shows how to do this:
 100 deg30 = . 523598775
 110 PRI NT " Co- or di nat es? "
 120 I NPUT xi , y i
 130 x = xi - 16
 140 y = yi - 16
 150 xs = (x * COS(deg30)) - (y * SI N(deg30))
 160 ys = (x * SI N(deg30)) + (y * COS(deg30))
 170 x = xs * 1. 3
 180 y = ys * 1. 3
 190 x = x + 46
 200 y = y + 16
 210 PRI NT " Tr ansl at ed: " , I NT(x + . 5) , I NT(y + . 5)

This translates the vertices of the square as follows:
 (10, 10) - > (43, 5)
 (21, 10) - > (56, 12)
 (21, 21) - > (48, 25)
 (10, 21) - > (36, 18)

The bounding box is therefore from X = 36 to 56, and Y = 5 to 25. The vertices of this are then translated
back to the source co-ordinate system, as shown by another basic program:
 100 degm30 = - . 523598775
 110 PRI NT " Co- or di nat es? "
 120 I NPUT xi , y i
 130 x = xi - 46
 140 y = yi - 16
 150 x = x / 1. 3
 160 y = y / 1. 3
 170 xs = (x * COS(degm30)) - (y * SI N(degm30))
 180 ys = (x * SI N(degm30)) + (y * COS(degm30))
 190 x = xs + 16
 200 y = ys + 16
 210 PRI NT " Rever se t r ansl at ed: " , I NT(x + . 5) , I NT(y + . 5)

This translates the vertices of the bounding box as follows:
 (36, 5) - > (5, 13)
 (56, 5) - > (18, 5)
 (56, 25) - > (26, 18)
 (36, 25) - > (13, 26)

We then set up A1 as the source address register, making its window base the top left hand corner of the
source image, and its window size the image size. The A1 pointer will traverse the translated bounding
box.

Gouraud Shading and Z-Buffering

Gouraud shading is a simple technique for modelling lit curved surfaces, which are represented by a
series of polygons. To make the surface appear curved, the intensity must vary smoothly, rather than
being uniform over each polygon. Gouraud shading approximates to the appearance of the curved
surface by computing the intensity at each vertex, using a vertex normal, and some suitable illumination
model. The vertex intensity is then linearly interpolated across the polygon edges, and the edge intensities
are linearly interpolated across the polygon scan lines.

Gouraud shading is only an approximation to the appearance of the curved surface, and may appear
unnatural where there are large intensity changes across single polygons. However, it is much more
attractive than not graduating the shading at all. Better shading can be achieved with Phong shading,
where the normals are interpolated, but this is much more computationally intensive, and is not feasible
within the Blitter.

Z-buffering involves attaching a Z value attribute to each pixel, which corresponds to how far away it is
from the observer. When pixels are drawn on the screen, their Z values can be compared with the Z of
the pixels already there, and the existing data preserved if closer to the observer. Z-buffering therefore
provides a simple means of achieving hidden surface removal.

The Blitter can perform Gouraud shading and Z-buffering in sixteen bit pixel mode only. Each blit creates
one scan line of a polygon, with the graphics processor responsible for re-calculating the start, length and
gradient parameters for each scan line. Four pixels and their associated Z values can be calculated as
fast as the memory interface can write them out, so the bus rate is always the limiting factor.

To calculate the Z and intensity values, the Blitter contains registers which represent the Z and intensity
with a sixteen bit integer and sixteen bit fractional part. The intensity integer also contains the colour
value, so intensity is prevented from overflowing into the colour information. The TOPBEN and TOPNEN
bits enable this overflow, if desired.

There are four of these thirty-two bit values for intensity, and four for Z, so that four pixels may be
calculated in parallel. There are also thirty-two bit Z and intensity increment registers, which give the
amount added to each pixel for each write.

At each pass round the inner loop; the sixteen bit fractional part of the intensity increment is added to the
fractional parts of the intensity values, held in the source data register. Then the eight bit integer part of
the intensity is added with carry out of the fractional add to the integer pixel values in the pattern data
register. Carry is prevented from propagating from intensity to colour. A similar mechanism governs Z.

Both the intensity and the Z values saturate. This means that if they reach their lowest or highest values
they are clipped there, rather than wrapping round. For example, adding one to a Z value of FFFF hex will
give FFFF, not the overflow result 0000.

To take an example, consider blitting an 18 pixel strip of Gouraud shaded Z-buffered pixels. The Blitter
command registers would be programmed as follows (all other registers need not be written).

Address registers are set up as follows:
A1_BASE 0x01600000 The wi ndow base addr ess
A1_PI TCH 1 Pi xel dat a and Z dat a al t er nat e
A1_PSI ZE 4 16 bi t pi xel s
A1_ZOFFS 1 Z dat a i s one phr ase up f r om pi xel dat a
A1_WI DTH 0x11 20- pi xel wi ndow: 1. 01 x 2^ 4 = 0100 01
A1_ADDC 0 Add one phr ase t o addr ess
A1_WI N_X 20 Wi ndow wi dt h
A1_WI N_Y 5 Wi ndow hei ght
A1_PTR_X 1 Fi r st pi xel at addr ess 0, 1
A1_PTR_Y 0

Data registers are set up assuming the first pixel has an intensity of C7.2833, and a colour of 00. The
intensity gradient is minus 15.9265. The values for the first four pixels have to be set up (the left-most is
actually off the edge of the strip, so the intensity gradient is subtracted from it). Similarly, the Z of the first
pixel is E7E7.E000, and the Z gradient is minus 1818.1FFF.
Pat t er n 00DC00C700B1009C I nt ensi t y i nt eger par t s and col our dat a
Sour ce FEDCEAC7D6B1C29C I nt ensi t y f r act i ons
Sour ce Z1 FFFFE7E7CFCFB7B7 Z i nt eger par t s
Sour ce Z2 FFFFE000C001A002 Z f r act i onal par t s
I I nc FFA9B66C I nt ensi t y i ncr ement (f our t i mes mi nus 15. 9265)
Z I nc 9F9F8004 Z i ncr ement (f our t i mes mi nus 1818. FFFF)

Control information is set up as follows:
I nner count 18 St r i p wi dt h
Out er count 1 Si ngl e pi xel hi gh st r i p
DSTEN 1 Read dest i nat i on dat a, t o r est or e i f necessar y
DSTENZ 1 Read dest i nat i on Z, t o compar e wi t h comput ed Z
DSTWRZ 1 Wr i t e dest i nat i on Z, r est or i ng or r epl aci ng
CLI P_A1 1 Cl i p wi t hi n wi ndow
GOURD 1 Gour aud dat a comput at i on enabl ed
GOURZ 1 Z buf f er dat a comput at i on enabl ed
PATDSEL 1 Wr i t e pat t er n dat a
ZMODE 3 Over wr i t e ex i st i ng dat a i f t he new Z val ue i s
 gr eat er t han or equal t o t he exi st i ng Z val ue

The numbers here are pretty arbitrary, but they show the general idea.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 63

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Polygon Drawing

Midsummer can draw polygons as a single blit. These polygons must be three or four sided, and can have
only two sides which are not horizontal.

Polygon types that can be drawn in one blit
These polygons are drawn by allowing the inner loop counter to be modified by a delta value after each
pass round the inner loop. The inner loop counter initial value and its inner loop count delta value are both
16.16 bit numbers. To re-initialise the pixel address pointer, the step value itself requires a step delta,
which is added to it after each pass round the inner loop, thus:

inner loop counter delta gives change in width
for each scan line

step moves the pointer from the end of one line to
the start of the next, the step delta describes how
much this changes from one line to the next

To allow these polygons the be Gouraud shaded, the I and Z values require a step value, and that step
value must have a step delta, in the same manner as the pointer. Texture source address X and Y values
will also have a step and step delta value, as well as their increment values.

Gouraud Shading

This polygon blitting mode may also be applied to shaded polygons. However it is largely restricted to
blitting triangles in this mode, because it is only for triangles that the intensity gradient does not change
from one scan line to the next. This is also true for Z and texture address values. The constant gradient is
not in fact true if perspective maths is involved, but is a good approximation. (See the discussion of
perspective in texture mapping.)

Address Generation

Address generation for the polygon is handled by the A1 address generator. The address pointer is set up
as normal to point at the first pixel of the polygon to be drawn. The inner counter and its fractional part are
set up to give the width of the first row of pixels. The width of the second row of pixel should also be
calculated, and the difference between this and the first loaded into the inner counter delta register.

A1 will normally be set to phrase mode for this operation, to give maximum speed. As this leaves the
pointer on a phrase boundary at the end of a scan line rather than on a pixel boundary, the step values
would not vary linearly as the polygon is drawn. Therefore the A1 step load bit in the flags register should
be set. This causes the outer loop A1 updates to load the pointer directly from the step register (and its
fractional part), rather than using the step register to modify the pointer. This means that the step register
becomes the pointer initial value. The step delta registers then give the amount by which the step value
should be modified each line. Normally, the X step will be set to the gradient of the left hand edge of the
polygon, and the Y step set to one.

The UPDA1 and UPDA1F bits have to both be set for the step register function to operate correctly.

Data Handling

To allow the data for Gouraud shading and Z-buffering to be reset on each scan line, the I and Z values
both now have step and step delta values. However, the data ALU values also suffer from the same
problem as the address, i.e. scan lines end on a phrase boundary and not a pixel boundary, so the
variation in the step values required to reset them to the start of the next scan line does not vary linearly.

To remove this problem, and to improve the programmer’s model of the blitter generally, a new arithmetic
unit in the blitter data section comes into play when the DATINIT bit is set. This causes an ALU to pre-
calculate the offsets required for the four pixels that make up a phrase, taking the step value as the initial

pixel value, and the increment as the offset. For big-endian operation the four possible initial conditions
are:

first pixel to be drawn

63 00 1 x increment

-1 x increment 0

0

0

1 x increment

1 x increment

2 x increment

2 x increment

3 x increment

-1 x increment

-1 x increment

-2 x increment

-2 x increment-3 x increment

first pixel to be drawn

first pixel to be drawn

first pixel to be drawn

X % 4 = 0

X % 4 = 1

X % 4 = 2

X % 4 = 3

Table of initialization offsets for pixels.
The initialisation unit takes the I and Z increment values, divides them by four, then scales them and adds
them to or subtracts them from the step values as shown. This is done for both the integer and fractional
parts. The X value used for this is the A1 X pointer.

This function is not restricted to the blitter polygon drawing mode, and may also be used when polygons
are being drawn strip by strip, as on Jaguar One, to save processing overhead.

Intensity and Colour Values

Midsummer implements extended precision intensity calculations. These should now be used in
preference to the old Jaguar One 8.16 bit Jaguar values. Intensity is now treated as a signed 11.16 bit
number, when the EXT_INT bit is set for extended precision intensity calculation. This mode must be
used when using the polygon draw mode and Gouraud shading is being performed.

The intensity registers are extended to this precision, and there is an extended intensity increment
register, which contains only the 11.16 bit intensity increment. Note that if the extended intensity
increment register is used, the old intensity increment register should be initialised to zero once.

The extended precision intensity is not saturated when the addition of the increment is performed, the
saturation is performed when the data is output. Saturation treats the 11 bit intensity value as a signed
number, and if it is negative outputs zero, otherwise if it is greater than 255 it outputs 255. If overflow of
the 11 bit value occurs then errors may occur, but this should not happen in normal operation. 11 bits was
chosen as the precision as the most extreme case possible is drawing a two-pixel wide strip of a polygon,
where the two pixels straddle a phrase boundary, as shown below:

polygon strip

initial values

0 255-255-510-765

polygon strip

initial values

255 05107651020

phrase 1 phrase 2

intensity values:

The requirement in this situation is for the data initialiser to be able to set up appropriate intensity values
on the left-most pixel value of the first phrase, so that when the intensity increment is added the correct
value is present in the left-most pixel of the second phrase.

Note that there is not an equivalent extension to the range of the Z buffer values, and if your program has
to deal with the sort of cases shown above for intensity for Z as well, then you will have to reduce the
precision of the Z used to prevent overflow or underflow occurring in the initialisation process.

Polygon Control Flags

The main control flag for polygon drawing is the POLYGON control flag in the blitter command register.
When this is set the following functions are enabled:

Page 64 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

• The A1 step delta fractional parts are added to the A1 step fraction values in the A1 update fraction
cycle between passes through the inner loop. This requires the UPDA1F flag to be set.

• The A1 step delta values are added to the A1 step values in the A1 update cycle between passes
through the inner loop. This requires the UPDA1 flag to be set. If the UPDA1F flag is set carry occurs
from the fraction to the integer parts as required.

• The inner counter reload value is modified by the inner counter delta value on each pass through the
inner loop. This requires both the UPDA1 and UPDA1F flags to be set for correct operation. To avoid
a potential rounding error, the fractional part of the A1 X pointer is added to the inner loop reload
value before it is loaded into the inner counter itself.

• The I and Z values are modified in the outer loop. See the discussion of the outer loop states under
“Controlling State Machines” above.

You will almost always want to set the DATINIT function so that the I and Z values, and the texture X and
Y pointers, are initialised for each scan line from the step register, as discussed above.

The A1 step load function is also normally set for polygon operations, particularly in phrase mode. This
means that the A1 step values define the start pixel for each scan line, and the A1 step delta values
describe the gradient of the left hand side. Note that both the A1 step value and the A1 pointer should be
initialised with the first pixel address at the start of the blit under these circumstances.

Texture Mapping

Texture Mapping involves mapping from a bit-map image onto a surface which has been rendered in 3D.
It is used as a technique to make surfaces more “interesting” and realistic than just flat or Gouraud
shaded surfaces. It can be used to simply make surfaces textured, rough or grubby; or it may be used to
map a realistic appearance, e.g. brickwork on a wall, or rivets on a ship.

The texture must be mapped onto the surface so that it always appears in the same position on an object
as the object moves in 3D. This requires rotation, scaling, skewing and perspective transformation. The
first three functions transform a linear traverse across the target (i.e. one polygon scan line) into a linear
traverse across the source image. Unfortunately, the perspective transform does not, and would require a
divide at each pixel, so is therefore not feasible within the blitter. The distortions due to not performing the
perspective transform properly are not particularly objectionable, and can be reduced by sub-dividing a
polygon into smaller pieces.

Memory Considerations

Texture mapping on the original Jaguar system was fastest when done with both the source and
destination in DRAM. However, as it had to be done pixel by pixel, it used the DRAM in pretty well the
worst way imaginable. Because the source and destination lay in different DRAM banks, a row address
overhead was performed for each read and write.

Midsummer is capable of texture mapping from internal memory. A texture generation unit computes four
X and Y pairs for a phrase, in much the same way as it currently computes I and Z values. This can fetch
values from internal memory in parallel with external bus activity. If the texture is duplicated in internal
memory, then it can perform two fetches per clock cycle, so that the blitter can do texture-mapped write
cycles at the maximum bus rate, i.e. a phrase of texture mapped pixels every two clock cycles.

However, the internal memory resource is severely limited in size. The blitter can therefore also perform
these texture fetches out of external DRAM. Again this can now be performed a phrase at a time, but as
the four source pixels are not contiguous, four reads are required for each write cycle. However, these will
not necessarily all incur the row address overhead, because if they all lie in the same DRAM page, then
only the first read will incur the overhead. At the time this document was written, all current systems have
2048 byte pages, so that if the whole texture is this small then four arbitrary pixels will always lie in the
same page. However, even if the source texture is larger than this, it is likely that most of the time the four
pixels will be sufficiently local to each other to lie in the same page.

Let us examine how long texture mapping takes. On Jaguar One, to texture map four 16 bit pixels took:

 4 x (row change + source read + read to write delay + row change + destination write)

which is 4 x (3 + 2 + 1 + 3 + 2) = 44 clock cycles

On Midsummer, texture mapping four 16 bit pixels when all four source pixels lie in the same DRAM
bank, which will the typical case, takes:

 row change + (4 x source read) + read to write delay + row change + destination write

which is 3 + (4 x 2) + 1 + 3 + 2 = 17 clock cycles

The very worst case is if every fetch causes a row change this will be exceptional, and this takes:

 4 x (row change + source read) + read to write delay + row change + destination write

which is 4 x (3 + 2) + 1 + 3 + 2 = 29 clock cycles

Texture mapping from internal RAM will be four clock cycles per destination write of four pixels, with the
texture duplicated in internal RAM it takes two clock cycles per four pixels.

Clearly texture mapping from internal texture memory is very attractive, but the restrictions on internal
memory size, will mean that it will not always be possible. You may wish to consider blitting each texture
into internal memory before they use it. Certainly this will be worthwhile if the texture is used several times
over.

Note that the blitter will perform one texture source data read for each destination pixel. If the texture is
being significantly expanded then there will be a significant inefficiency here as the same source pixel is
repeatedly re-read. This overhead will be far less significant for on-chip textures, and it may well prove
worth-while to transfer some textures into internal RAM before using them to avoid this overhead.

Anti-Aliased Texture Mapping

Aliasing is a major quality problem on texture mapped surfaces. When they are expanded, the squares
that make up the source pixels become very obvious. When the texture is compressed, bright spots can
twinkle as the texture is moved or scaled, depending on whether or not they are sampled. The blitter
implements a mode where anti-aliasing is performed over a two pixel by two pixel square. This helps a lot
with the scaling up problem, and helps to some extent with the scaling down problem, although if the
scaling down factor is more than about two, then some twinkling will still occur.

To anti-alias the texture, the blitter must read four source pixels, thus:

A B

C D

(x,y) (x+1,y)

(x,y+1) (x+1,y+1)

(x.fx,y.fy)

X

Y

In this diagram, the point (x.fx,y.fy) is the target pixel address transformed back into source address
space. The x and y parts are the integer part of the address, and the fx and fy parts are the fractional part
of the address. Anti-aliasing is performed by taking a weighted average of the four surrounding pixels,
designated A, B, C and D. The averaging function linearly interpolates between the corner values. The
function is:

 F(x,fx,y.fy) = (1-fy).((1-fx).A + fx.B) + fy.((1-fx).C + fx.D)

This function has to be performed on the intensity and C and R vectors of CRY pixels, and on each of R,
G and B vectors for RGB pixels. The blitter only supports this function for CRY and RGB16 pixels.

The blitter anti-alias unit performs the two subtracts necessary to give the weighting factors, and then
performs the six multiplies and three adds for each of the three pixel vectors. This adds an extra clock
cycle to each texture generation transfer, and the unit produces one pixel at a time instead of phrase at a
time as four source reads are required per pixel, instead of one.

Texture mapping one anti-aliased pixel when all four source pixels lie in the same DRAM bank takes:

 row change + (4 x source read) + anti-alias + read to write delay + row change + destination
write

which is 3 + (4 x 2) + 1 + 1 + 3 + 2 = 18 clock cycles per pixel

Texture mapping from internal RAM will be five clock cycles per pixel, with the texture duplicated in
internal RAM it takes three clock cycles per pixel.

The INTERP bit has to be set in the extended command register to enable this function, and the
TEXTRGB bit controls how the pixels are split up for the interpolation function. The destination address
pointer should be set into 16 bit pixel mode, i.e. not in phrase mode.

Texture address unit 0 is the address of the bottom left pixel (A), and it is the fractional part of its address
which is used to give the weighting factors. Texture address 1 is bottom right (B), 2 is top left (C), and 3 is
top right (D). The data initialisation unit whose function is enabled by DATINIT knows about this
functionality, and if both DATINIT and INTERP are set it will initialise address 0 to the step value, 1 to the
step value with 1 added to the X address, and so on.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 65

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

An interesting point: the interpolation unit could also be used to perform cross-fades between up to four
pictures, by pointing the four texture X,Y pairs at each of the pictures, and using the fractional part of
pointer 0 to control the relative levels. In this mode the pointers will have to be initialised manually and the
DATINIT function cannot be used.

Texture Data

The texture map unit can fetch texture data from either internal or external memory. Texture addressing is
more limited than general blitter addressing from the A1 and A2 address generators. Textures must be 2n
by 2m pixels, for a restricted range of n and m. In addition, the texture must lie on a 2n times 2m boundary.
Texture may be either 4 or 16 bits per pixel, and 4 bit-per-pixel textures are mapped to 16 bits by a colour
look-up table within the blitter; so that all texture operations are performed at 16 bits per pixel.

Textures may be fetched from on-chip memory at the rate of one read per clock cycle, and this happens
at the same time as external writes. If the texture data is duplicated in internal memory then two reads
may occur per clock cycle, so that the blitter can generate texture data at the full write bus rate, i.e. one
phrase per two clock cycles. If only one texture copy is available then this operation runs at half speed.
There is no benefit in duplicating textures in external memory.

Internal texture RAM consist of two blocks of 1K x 32 RAM, into which pixels are packed. This RAM is
shared with the GPU.

Textures can be from 32 to 2048 pixels in either dimension, either in 4 or 16 bits per pixel mode. Textures
therefore range from 512 bytes, for a 32 x 32 4 bit texture to 8 Megabytes for a 2048 x 2048 16 bit texture.
The latter may have limited applications! There is no restriction that textures have to be square.

Where double textures are being used in internal RAM, they have to be 4096 bytes apart. Double textures
may only have a width and height of 32 or 64 pixels, they may be either 4 or 16 bits per pixel, but 64 x 64
16 bit per pixel textures may not be doubled because they are just too damn big.

Textures may be mirrored as they wrap. This function is enabled when the TEXTMIR bit is set in the
extended command register. This means that textures will appear to tile even if they were not set up to do
so, thus (for simplicity, a texture smaller than is possible in the blitter is shown here):

Texture Wrapping without TEXTMIR Wrapping with TEXTMIR

The blitter uses the texture pointer bit immediately above the most significant bit being used for address
generation as the control bit for this function. For example, if the texture is 256 pixels wide, then if bit 8 of
the texture X pointer is set the two’s complement of the X pointer is used for address generation. This
occurs for both X and Y pointers, will work for either internal or external textures, with 4 or 16 bit texture
data, and will work for doubled internal textures too. The only restriction is that if either dimension of the
texture is 2048 pixels, then the texture will not wrap in that dimension.

Note that the pixels at the mirrored edges are repeated.

Shading Textures

The data from the texture unit may be combined with the pattern data register to allow Gouraud shading
to be combined with texture data. The extended intensity field is saturated, and used as a weighting factor
to mix the texture data with the contents of the blitter color register. Full intensity corresponds to maximum
weighting to the color register.

This allows the blitter a range of useful effects:

• darken or lighten textures by mixing with black or white

• adding fog and distance haze effects by mixing with grey or blue-grey

• color wash type effects, such as “red mist” by mixing with another colour

All these may be smoothly varied over a strip or polygon by setting up the Gouraud shade mechanism
appropriately. The function uses multipliers to perform the mixing properly, it is

 F(x) = (1-Iv).x + Iv.Cv

where Iv is the intensity value, x the input pixel value, an Cv the contents of the colour register. It can be
used with either CRY or RGB pixels, by setting the TEXTRGB control bit appropriately.

Two control bits, PDSEL0-1, control what is generated when PATDSEL is set. The output may be pattern
data, as on Jaguar One, the texture data directly, the extended precision intensity pattern data with
saturation applied, or the weighted mix data as described above.

The inputs to the multiplicative mixer may be selected from a range of sources. This discussed further
above under the section on the Data Path, and allows a range of functions including:

• mixing texture data with a background color using the computed intensity to control the mix
• multiplicative Gouraud shading by mixing two colours, the texture data and the color register,

according to the computed intensity. This allows shading in CRY or RGB16 modes, and offers a
choice between shading to black or shading to white.

• translucent or anti-aliased edge texture mapping by mixing texture with the destination, with the
source data providing a mix map.

• mixing two images from the source and destination fields, using the static intensity to control the mix.
• computed translucency, mixing the texture data with the destination according to the computed

intensity.

Texture Read Operation

Texture operation is controlled by a simple state machine:

idle

textrd0

textrd1

textrd2

textrd3

interpol

.

.
.

.
.

/GOT_TXT

/GOT_TXT

/GOT_TXT

/GOT_TXT

GOT_TXT

GOT_TXT . /TEXTDBL

GOT_TXT .
TEXTDBL .
/INTERP .
/TXT_GO

/TXT_GO TXT_GO

/TXT_GO

RESET

TXT_GO
GOT_TXT .
TEXTDBL .

/INTERP .
TXT_GO

GOT_TXT .
TEXTDBL .
INTERP

GOT_TXT . /INTERP . TXT_GO

GOT_TXT .
INTERP

GOT_TXT
GOT_TXT .
/INTERP .
/TXT_GO

The states have the following functions:

idle No action is performed
textrd0 Read from (X0,Y0), and from (X1,Y1) if TEXTDBL is true.
textrd1 Read from (X1,Y1) if TEXTDBL is false, or from (X2,Y2) and (X3,Y3) if TEXTDBL is true.
textrd2 Read from (X2,Y2).
textrd3 Read from (X3,Y3).
interpol Interpolate between the four read pixel values, using the fractional parts of the (X0,Y0)

pointer.

Page 66 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

The texture read states will normally complete in one clock cycle when fetching from internal memory.
The interpolation state will always complete in one clock cycle.

Built In Textures

Oberon has five textures built into ROM:

Name First image Second image
Metalica F06000 F07000
Dirt F06200 F07200
Clouds F06400 F07400
Cement F06600 F07600
Grass F06800 F07800

The Cement, Clouds. Dirt and Metalica textures are 32 by 32 pixels. The Grass texture is 64 x 64. These
are all four bit-per-pixel textures, so the appearance of them can be altered completely by modifying the
blitter CLUT before texture mapping them. This will allow them to be re-used many times without looking
the same each time.

The texture ROM is duplicated, so that TEXTMODE can be set to 3 when using them, for duplicated
internal texture data. This can double the draw rate from them.

The names are not indicative of how the textures should be used, any of them could perform just about
any of the functions described with a suitable palette of colours. You can get the source Targa files from
Atari.

The CLUT values for these textures as originally encoded were:
met al i ca: 8869, 8776, 9764, 9788, 9797, 974E, A663, A77A,
 A678, 87A9, 977B, A78E, 87A1, 8789, 979A, C65A

di r t : D567, D577, C553, B53B, E5C1, D68E, D58E, E5B1,
 E5A2, D6AF, D5DE, E6F3, E6DD, E6C8, E6E1, E673

cl ouds: 56BD, 56C6, 66D2, 66DE, 66D5, 66C6, 66CF, 46C6,
 56CE, 56C0, 46BE, 67DB

cement : 778C, 7787, 77A9, 7796, 7771, 777B, 775A, 7758,
 7765, 779C, 77A5, 764D, 77B8, 77AD, 77BD, 77CA

gr ass: BA76, AA6D, BA8B, 9A66, A957, 8955, BAAE, 9947,
 B96F, BA9C, A978, BA9F, AA85, BA8D, 9A86, BAB2

These values are 16-bit CRY colors expressed in hex. (Clouds only uses 12 colors.)

Remember that you can use any CLUT you like with these textures, so you can darken or lighten them,
change their hue, change their contrast, remove any color variation, use them in 16-bit RGB mode, or any
other change you like. This means that you can use these textures without them looking the same as
anyone else’s use of them.

Puck

“First rehearse your song by rote,
To each word a warbling note.
Hand in hand with fairy grace

Will we sing and bless this place.”

 Act V, Scene 1

Puck is the companion chip to Oberon in the Jaguar games console, and is provides two J-RISC
processors and some interface functions. These are:

• A J-RISC processor (DSP) principally intended for sound synthesis.

• A J-RISC processor (RCPU) intended to act as the main system processor.

• Frequency dividers for clock synthesis.

• Two programmable timers.

• Synchronous serial interface and baud rate generator (I2S).

• Asynchronous serial interface and baud rate generator (ComLynx).

• Joystick interface decodes

• Six general purpose IO decodes

Puck occupies a 64K byte slot in Jaguar's address space. It appears as a 16 bit port (as does all IO). The
DSP however is a 32 bit processor so all transfers to the DSP are done in pairs.

Memory Controller

The memory controller in Puck allows the RISC processors to access 64 bit memory at the maximum bus
rate. In order to do this with the best possible efficiency some of the Oberon functions are duplicated in
Puck, to obtain the speed benefits of doing this control locally. The Puck memory controller registers
must be programmed to match the MEMCON registers in Oberon at all times or failure will occur. The
MEMCON1-2 and MEMCONP1-2 registers have the same respective bit positions, so the same data may
be written to both.

PUCK_MEMC1 Puck Memory Configuration Register One F10040 WO

Bit 0 ROMHI When set the two ROM decodes address the top 8M within the
16M window. When clear the ROM decodes address the bottom
8M. This document assumes throughout that ROMHI is set when
discussing register addresses.

Bits 1,2 ROMWIDTH Specifies the width of ROM:
0 8 bits
1 16 bits
2 32 bits
3 64 bits

Bits 3-15 unused must be set to match MEMCON1.

All the above bits are undefined on reset and must be programmed to match MEMCON1.

PUCK_MEMC2 Puck Memory Configuration Register Two F10042 WO

Bits 0,1 unused must be set to match MEMCON2.
Bits 2,3 DWIDTH0 Specifies the width of DRAM0

0 8 bits
1 16 bits
2 32 bits
3 64 bits

Bits 4,5 unused must be set to match MEMCON2.

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 67

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

Bits 6,7 DWIDTH1 Specifies the width of DRAM1
0 8 bits
1 16 bits
2 32 bits
3 64 bits

Bits 8-11 unused must be set to match MEMCON2.
Bit 12 BIGEND Specifies that big-endian addressing should be used. This

determines the address of a byte within a phrase and allows
Jaguar to be used comfortably with Big-endian (Motorola)
processors or with Little-endian (Intel) processors.

Bit 13-15 unused must be set to match MEMCON2.

All the above bits are undefined on and must be programmed to match MEMCON2.

Frequency dividers

Puck is responsible for the synthesis of the system clocks. These are:

Chroma clock. This is 4.43 MHz for PAL and 3.58 MHz for NTSC and should have a 50% duty
cycle. The color encoder may require 4x this clock.

Video clock. This is a multiple of the pixel clock (which is typically between 6 MHz and 12
MHz) and must be fixed relative to the chroma clock in order to avoid the "dot-
crawl effect" on TVs.

Processor clock. This determines the speed of the memory interface, the graphics processor, the
object processor and the digital sound processor. This clock is divided by two to
provide a clock for an external processor.

CPU clock This is the clock for the 68000 CPU.

Clocks are generated by two free-running crystal oscillators, and by one voltage-controlled crystal
oscillator (VCXO). The two free running crystals provide 26.6 Mhz, the same as Jaguar One; and a new
frequency for Jaguar Two, probably in the range 30-35 Mhz. This is yet to be defined. The VCXO runs at
four times the color sub-carrier, and gives the chroma clock.

!!! - more information required on the new clocking control.

CLK1 Processor clock divider F10010 WO

This register is only used if the processor clock is generated by PLL. This ten bit register determines the
frequency ratio between the processor clock oscillator input (PCLKOSC) and the processor clock divider
output (PCLKDlV). In PLL clock synthesis PCLKDIV is typically locked to CHRDIV so the processor clock
frequency will be

 (N + 1) * CHRDIV

where N is the value written to this register. This register is initialised to one on reset. The PCLKDIV
output produces a pulse every N + 1 PCLKOSC cycles.

CLK2 Video clock divider F10012 WO

This register is only used if the processor clock is generated by PLL. This ten bit register determines the
frequency ratio between the video clock (VCLK) and the video clock divider output (VCLKDIV). As before
in PLL clock synthesis VCLKDIV is typically locked to CHRDIV so the video clock frequency will be

 (N + 1) * CHRDIV

where N is the value written to this register. This register is initialised to zero on reset. The VCLKDIV
output produces a pulse every N + 1 VCLK cycles.

CLK3 Chroma clock divider F10014 WO

This six bit register determines the frequency ratio between the chroma oscillator (CHRIN, CHROUT) and
the chroma clock divider output (CHRDIV). The divider divides the chroma oscillator frequency by N + 1
where N is the value written to the register. The CHRDIV output has a 50% duty cycle. This register is
initialised to 3Fh (divide by 64) on reset.

The most significant bit of this register enables the chroma oscillator onto the VCLK pin. This bit is clear
on reset (output disabled).

Where PLL synthesis is used this register is typically left as reset. This provides the lowest reference
frequency for generating PCLK and VCLK.

For non-PLL synthesis the chroma crystal is some small multiple of the chroma carrier and this frequency
is used as the video clock. This register is written with the appropriate number to generate the chroma
frequency on the CHRDIV pin and bit 15 is set to enable the crystal frequency onto the VCLK pin.

Programmable Timers

Puck contains two identical timers. Each consists of two sixteen bit dividers. The first stage (loosely called
the pre-scaler) divides the processor clock by N + 1. The second stage divides this frequency by M+1,
where N and M are the values written to their associated registers. It is therefore possible to achieve
frequency division in the range four to four billion.

The outputs of the second stages may be used to interrupt either of the digital sound processor or the
external microprocessor.

It is intended that timer one is used to generate the sample rate frequency for sound synthesis and that
timer two is used to generate a music tempo frequency. The timers may however be used for other
purposes. It should be noted that writing to the associated registers presets the counters so they could be
used to provide programmable delays. Also the registers are readable which can be used to measure
time accurately. This might be used in development to help profile code or to help measure the time
between joystick events.

There are four registers associated with the timers. The read addresses are different to the write
addresses.

JPIT1 Timer 1 Pre-scaler F10000 WO
 F10036 RO
JPIT3 Timer 2 Pre-scaler F10004 WO
 F1003A RO

The pre-scalers divide the processor clock by N + 1 where N is the 16 bit value written to them. The pre-
scalers are down counters which are loaded when the register is written and when they reach zero. They
are readable, but this is really for chip test purposes as they can change while they are being read they
might be used by the DSP to measure short events with precision.

JPIT2 Timer 1 Divider F10002 WO
 F10038 RO
JPIT4 Timer 2 Divider F10006 WO
 F1003C RO

These dividers divide the output from the corresponding pre-scalers by N+ 1 where N is the 16 bit value
written to them. The dividers, like the pre-scalers, are down counters which are loaded when the register
is written and when they reach zero.

When they reach zero they may interrupt either of the DSP or the CPU. These interrupts are
independently maskable.

Interrupts

There are seven interrupt sources which may interrupt the external microprocessor. The interrupt sources
are as follows:

• External A rising edge on the EINT[0] input to Puck may cause an interrupt.

• DSP The DSP may generate an interrupt by writing to a port.

• Timers Both timers may generate interrupts.

• Sync. The synchronous serial interface can generate interrupts as described below.

• UART The asynchronous serial interface can generate interrupts as described below.

• RCPU The RCPU may generate an interrupt by writing to a port.

Page 68 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

It is likely that only one or two interrupt sources would normally be directed at the microprocessor. Some
of the above are mainly of relevance to the DSP in sound synthesis. The Interrupt control register
enables, identifies and acknowledges CPU interrupts from the six different interrupt sources.

PUCK_INTC Interrupt Control Register F10020 WO

Bit Name Description
0 EXT_ENA Enable external interrupt 0.
1 DSP_ENA Enable interrupts from the DSP
2 TIM0_ENA Enable Timer One interrupts (sample rate)
3 TIM1_ENA Enable Timer Two interrupts (tempo)
4 ASI_ENA Enable Asynchronous Serial Interface interrupts
5 SSI_ENA Enable Synchronous Serial Interface interrupts
6 RCPU_ENA Enable interrupts from the RCPU
8 EXT_CLR Clear external interrupt 0.
9 DSP_CLR Clear the DSP interrupt
10 TIM0_CLR Clear Timer One interrupt
11 TIM1_CLR Clear Timer Two interrupt
12 ASI_CLR Clear the Asynchronous Serial Interface interrupts
13 SSI_CLR Clear the Synchronous Serial Interface interrupts
14 RCPU_CLR Clear the RCPU interrupt

PUCK_INTS Interrupt Status Register F10020 RO

This register allows a processor to determine which interrupt is pending.

Bit Name Description
0 EXT_INT External interrupt 0
1 DSP_INT DSP interrupt
2 TIM0_INT Timer One interrupt
3 TIM1_INT Timer Two interrupt
4 ASI_INT Asynchronous Serial Interface interrupt
5 SSI_INT Synchronous Serial Interface interrupt
6 RCPU_INT RCPU interrupt

Synchronous Serial Interface

The synchronous serial interface in Puck is the interface to the audio digital to analogue converters, and
is also the interface to the serial data stream from the CD-ROM drive. These two functions may be tied
together, for instance when playing red book audio; or they may be quite separate. The data from the CD
is also available from a memory mapped FIFO. This is described elsewhere (it is part of the Butch device
in the Jaguar One CD-ROM).

The interface has two major components; a synchronous receiver/transmitter within the DSP memory
area; and a CD DMA controller which is a stand-alone bus master.

The synchronous receiver/transmitter was also present in Jaguar One. It is the synchronous equivalent of
a UART, and its main function is to transmit audio data to the DAC (digital-to-analogue converter). It can
also receive the data from the CD. The CD DMA controller is new for Midsummer. It is described below
on page 8.

A synchronous serial interface, as implemented here, consists of four wires: receive data, transmit data,
serial clock and word strobe. The serial clock and word strobe are generated by the bus master of the
interface, and define the bit rate and data framing on the two data lines. Puck can be either a master or a
slave to the serial interface connected to the DAC and DSP connector, but can only be a slave to the CD-
ROM (expansion bus). It is not possible to be a bus slave on the expansion bus (unlike Jaguar One).

The control of these lines is described in greater detail below. Puck has effectively two synchronous serial
interfaces, so that data may be transferred from the CD and to the DAC simultaneously, without requiring
both to use the same bit rate and word alignment.

The pins provided are as follows:

Name Function Description
TXD output transmit data to DAC and DSP connector

RXD input receive data from CD-ROM (expansion bus) or DSP connector
SCK input/output serial clock output to DAC; input from or output to DSP connector
WS input/output input from or output to DSP connector
QWS output word strobe output to DAC (muted version of WS)
SCK2 input serial clock input from CD-ROM (expansion bus)
WS2 input word strobe input from CD-ROM (expansion bus)

Diagrams below show how these are configured in operation.

Synchronous Serial Receiver / Transmitter

The interface can work in two modes. The first, called mode16, is compatible with I2S and has a sixteen
bit word length. The start of left and right words are marked by transitions in word strobe. Interrupts are
generated on the rising edge of word strobe. The second mode, called mode32, allows longer packets of
data to be communicated. In this mode a rising edge on word strobe synchronises the system which
continues to receive/transmit 32 bit words. Interrupts are generated every 32 bits. Mode 32 is not used
within the Jaguar console.

Mode16

Serial clock

Word strobe

Data 1 0 15 14 13 1 0 15

left data right data left data
Note

• The word strobe precedes the data by one bit.

• The word strobe and transmit data are clocked by the negative edge of the clock to provide the
maximum set-up and hold time in the receiver/slave.

• Data and word strobe inputs are sampled on the rising edge of the clock.

• The data is sent transmitted MSB first. If the interval between word strobe transitions is greater than
16 bits the transmitter sends zeroes after the LSB and the receiver ignores them. If the interval is
less than 16 bits the receiver sets the missing bits to zero.

• The diagram is the same whether the timing is generated internally or externally but Puck only
produces word strobes 16 bits in length.

Mode32

Serial clock

Word strobe

Data 1 0 31 30 29 1 0 31

Note

• Only the rising edge of the word strobe is significant

• Outputs change on the falling edge of the clock, and inputs are latched on the rising edge.

• 32 bit words continue to be received / transmitted until the next rising edge of word strobe.

The synchronous serial interface is controlled by seven registers. These are all within the local address
space of the DSP, and so may be accessed by the DSP without any external bus overhead. Other
processors may access them at these addresses. All transfers to them should be 32 bit, but the registers

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 69

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

themselves are only 16 bit. The addresses given are therefore a big-endian view of their position in the
memory map.

SCLK Serial Clock Frequency F1A150 WO

This eight bit register determines the frequency of the internally generated serial clock. The frequency is
given by:

 Serial Clock Frequency = System Clock Frequency / (2 * (N+1))

where N is the number written to this register.

SMODE Serial Mode F1A154 WO

Bit 0 INTERNAL When set this bit enables the serial clock and word strobe outputs.

Bit 1 MODE When set this bit selects MODE32.

Bit 2 WSEN This bit enables the generation of word strobe pulses. When set PUCK
produces a word strobe output which is alternately high for 16 clock cycles
and low for 16 clock cycles. When cleared Puck will not generate further high
pulses. This can be used by software to generate one word strobe at the start
of a packet of long-words in MODE32.

Bit 3 RISING Enables interrupts on the rising edge of word strobe.

Bit 4 FALLING Enables interrupts on the falling edge of word strobe.

Bit 5 EVERYWORD Enables interrupts on the MSB of every word transmitted or received.

LTXD Left transmit data F1A148 WO
RTXD Right transmit data F1A14C WO

These two sixteen bit registers hold data to be transmitted.

In MODE16 the right data is transferred to a shift register following the rising edge of word strobe and the
left data is transferred following the falling edge of word strobe.

In MODE32 the left data (most significant) is transferred first after the rising edge of word strobe (and
every 32 clocks later), the right data is transferred 16 clocks after the left data.

In either mode the registers may only be updated when the previous contents have been transferred to
the shift register.

LRXD Left receive data F1A148 RO
RRXD Right receive data F1A14C RO

These two sixteen bit registers hold received data.

In M0DE16 the right data is transferred from the shift register to the register following the falling edge of
word strobe and the left data is transferred following the rising edge.

In M0DE32 the left data (most significant) is transferred from the receive shift register to the left register
16 clocks after the rising edge of word strobe (and every 32 clocks later). The right data is transferred 16
clocks after the left data.

SSTAT Serial Status F1A150 RO

Bit 0 WS This bit reflects the state of the Word Strobe pin in order for software to
determine which data is being received. Do not use this signal for reading
input data. Read the interrupt control register instead.

Bit 1 Left In MODE32 it is not necessary for the Word Strobe to be toggled every 16
bits. An internal counter keeps track and this bit may be used as an
alternative to WS to determine which word is currently being transmitted or
received.

CD DMA Controller

The CD DMA controller is new for Midsummer. It is intended to allow the CD to be used as a data storage
medium with a minimal system overhead for data transfer.

Overview

The original Jaguar 1 I2S interface provided simple 32-bit I/O registers, requiring considerable processor
overhead both to receive data from the CD and to transmit audio to the DAC. Midsummer improves this
reception of data from the CD-ROM.

Two extra pins (SCK2 and WS2) allow the receive and transmit functions to operate completely
independently, and the CD DMA controller can receive double-speed CD data, recognise partition
markers then fill a circular buffer, all without processor overhead, using less than 0.4% of the main bus
bandwidth.

The controller functions in a similar way to the pattern-matching and data-transfer parts of the CD-BIOS
cd_initm/cd_read calls, and indeed these calls can be enhanced to use this mechanism. Management of
the CD mechanism, including error-detection, remains a software function.

How it works

A 32-deep FIFO accumulates longs as they arrive from the I2S receiver. A pattern-recogniser searches
these longs for a string of matching values (CD_PAT determines the value and PAT_LEN the number of
longs). Once the pattern is seen, the recogniser stops taking longs from the FIFO, which starts to fill up.
Once the FIFO has filled to a programmable ‘high-tide’ mark, the DMA controller acquires the bus and
burst-writes phrases (supplied by the Pairer) to memory until the FIFO is empty. The FIFO then starts to
fill-up again and the process repeats.

The first and last phrases written are masked internally if necessary, to allow long-alignment of the start
and end points.

Pattern
Recognizer

32x32
FIFO

Pairer

Serial To
Parallel

DMA External
Memory

RxD

Left/Right
RXD

Registers

32 32

64 64

Level

Match

CD_CTRL CD DMA Control Register F10080 WO

Cleared on reset.

Bit Name Description
0-4 HIGH_TIDE Write a value between 3 and 30.

When running, the CD DMA will empty the FIFO whenever it
contains more than this many longs (i.e. LEVEL>HIGH_TIDE).
Too-low a value will cause the DMA to acquire the bus often and
inefficiently transfer only a few values.
Too-high a value will cause the FIFO to overflow if the DMA cannot
acquire the bus quickly (because a higher-priority bus-master is
active).

5-10 PAT_LEN Write a value between 0 and 63.
The number of longs required in the partition-marker pattern. DMA
will commence after this number of longs have been recognised.
Set to zero to disable pattern-recognition.

11 CD_BIGPHR Controls the ‘endianness’ with which DMA stores incoming longs in
phrases. If true, the first long is stored in phrase bits [63:31].
Set true for Jaguar.

Page 70 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

12 CD_BIGLNG Controls the ‘endianness’ with which incoming left/right words from
the I2S interface are packed into long. If true, the first word is stored
in long bits[31:16].
Set false for Jaguar.

13 HI_PRI Causes CD DMA to request the bus with high priority
14 CD_LXFER Determines which word in each received pair of words is considered

the ‘second’, and thus the one that causes the pair to be transferred
into the CD DMA controller.
Clearing this bit means ‘transfer on right’, i.e. incoming words are in
‘left,right’ pairs (usually the case).
Setting this bit means ‘transfer on left’, i.e. incoming words are in
‘right,left’ pairs.

15 unused Write zero.

CD_STAT CD DMA Status F10080 RO

Bit Name Description
0-4 LEVEL Number of longs in the FIFO. Zeroed by ‘CD_RUN’ command.
5 MATCH If true, pattern-matching is complete and DMA is active.

Cleared by ‘CD_RUN’ command unless PAT_LEN is zero.
6 OVERFLOW Indicates that FIFO has overflowed since last ‘CD_RUN’ command.

A higher-priority bus-master is hogging the bus for too long.
HIGH_TIDE may need to be reduced.

7 FINISHED DMA has reached the end address and stopped.
Cleared by ‘CD_RUN’ command.

8-15 unused Zero.

CD_FLOW F10084 WO

See the ‘Data Flow’ section below.

Cleared on reset.

Bit Name Description
0 CD_ENHANCED When clear, bits 1,2,3 in this register are controlled by the

INTERNAL bit in the SMODE register, ensuring compatibility with
Jaguar1.
Set to control these bits directly.

1 CD_I2SCK2EN Determines source of internal SCK and WS.
0 for the internal clock generator,
1 for input from the CD on pins SCK2,WS2.
If CD_ENHANCED is clear, this bit is !INTERNAL.
Regardless of the state of this bit, the WS interrupts controlled by
the SMODE register, and the state of WS read in the SSTAT
register, refer to the transmit WS only.

2 CD_I2SRX2EN Determines the source of LRXD,RRXD receive register timing.
0 for the internal SCK and WS
1 for input from the CD on pins SCK2,WS2.
If CD_ENHANCED is clear, this bit is zero.

3 CD_I2SBYPASS Determines the source of serial data out to the DAC on pin TXD.
0 for the LTXD,RTXD registers
1 for the CD on pin rxd.
If CD_ENHANCED is clear, this bit is zero.

4 CD_I2SOE Output-enable for SCK and WS pins.
Normally set to 1 (by boot ROM) to drive the DAC.
Must be clear to slave Puck to these pins.

5 CD_I2SWSDEL If clear,WS is delayed by one SCK (DAC data is Philips format)
If set, WS is not delayed by one SCK (DAC data is Sony format)

6 CD_I2SWSINV If clear, WS is output high for left word, low for right (Philips format)
If set, WS is output low for left word, high for right (Sony format)

7-15 unused Write zero.

CD_ ACTN F10088 WO

Bit Name Description

0 CD_RUN A write to this register with this bit set clears the DMA controller then
enables it.

1 CD_STOP A write to this register with this bit set disables the DMA controller
2-15 unused Write zero.

CD_PATH F1008C RW

High word (bits 31..16) of pattern-recogniser long.

CD_PATL F1008E RW

Low word (bits 15..0) of pattern-recogniser long.

CD_STARTH F10090 RW

Bit Description
0-7 High word (bits 23..16) of CD DMA controller start address. Once pattern is recognised,

longs will be written to memory from this address.
8-15 Read/Write zero.

CD_STARTL F10092 RW

Bit Description
0-1 Read/Write zero.
2-15 Low word (bits 15..2) of CD DMA controller start address (long-aligned).

CD_ENDH F10094 RW

Bit Description
0-7 High word (bits 23..16) of CD DMA controller end address. DMA will continue to this

address, then stop and the ‘FINISH’ bit will be asserted. To continue forever, set this
address outside the range of the address mask.

8-15 Read/Write zero.

CD_ENDL F10096 RW

Bit Description
0-1 Read/Write zero.
2-15 Low word (bits 15..2) of CD DMA controller end address (long-aligned).

CD_MASK F10098 RW

Bit Description
0-4 Controls a mask applied to the DMA address, confining it within a circular buffer.

This bit of the DMA current address is always held clear.
e.g. If CD_MASK=8, bit 8 of the DMA current address will be held clear, so instead of
incrementing from XXX0F8 to XXX100, address will wrap-around to XXX000.
The circular-buffer size is 2CD_MASK bytes, and aligned on a 2(CD_MASK+1) byte boundary.
DMA transfers are phrase-aligned, so set this register to between 3 and 23.
Set to 0 to disable.

5-15 Read/Write zero.

CD_CURH F1009C RO

Bit Description
0-7 High word (bits 23..16) of CD DMA controller current transfer address. Note that this

may change between reading this register and CD_CURL.
8-15 Zero.

CD_CURL F1009E RO

Bit Description
0-2 Zero.
3-15 Low word (bits 15..3) of CD DMA controller current transfer address (phrase-aligned).

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 71

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

CD_FAKEH F1009C WO

Test only.

High word of ‘fake’ input long. See CD_FAKEL.

CD_FAKEL F1009E WO

Test only.

Low word of ‘fake’ input long. Writing to CD_FAKEH then CD_FAKEL inserts a long into the CD DMA
controller as if it had arrived from the I2S data stream.

Using the CD DMA controller

To use the CD DMA controller, the following registers must be set-up:

1)Write a ‘1’ to the CD_STOP bit to halt the controller (only necessary if the ‘FINISHED’ bit is false)

2)Set CD_CTRL as desired (PAT=0 to disable pattern-recognition).

3)Set CD_START to a long-aligned address.

For a linear buffer:

 4)Write 0 to CD_MASK to disable it

 5)Set CD_END to a long-aligned address.

For a circular buffer:

 4)Write suitable value to CD_MASK (see example below).

 5)For endless loop, set CD_END outside the buffer, else to a long-aligned address within.

6)If using the pattern recogniser, write desired long to CD_PAT.

7)Write to CD_ATN with CD_RUN bit set.

8)Start the CD mechanism.

As data arrives from the CD-ROM, it is searched for the partition marker - a pattern of PAT_LEN longs of
value CD_PAT. Once this is found, subsequent longs are written to memory from CD_START. At any
time, the current address that the DMA is writing-to can be monitored by reading CD_CUR. Once the end
address is reached, the controller shuts-off and the ‘FINISHED’ bit becomes true.

Example

To read from a partition labelled with a pattern of sixteen ‘00000001’s, into a 128K circular-buffer at the
top of DRAM :

1)Write a ‘1’ to the CD_STOP bit.

2)We’ll set HIGH_TIDE to half-way through the FIFO (16), PAT_LEN to 16, CD_BIGEND true and
low priority, so write $0A10 to CD_CTRL.

3)Write $001E0000 to CD_START.

4)We need to set the mask for a 128K circular buffer. This is 217 so write 17 to CD_MASK.

5)Write 00FFFFFC to CD_END (outside mask, so will loop forever).

6)Write 00000001 to CD_PAT.

7)Write 0001 to CD_ACTN to enable the controller.

8)Start the CD mechanism.

Data Flow

Jaguar1 had a single I2S bus of which it could either be master (driving SCK and WS) or slave (receiving
SCK and WS). Both receive and transmit had to be clocked by the same source, so for example when
slaving to a double-speed CD ROM, the DAC had to be driven at 88200Hz - somewhat excessive!

Midsummer separates the receive and transmit functions onto two separate I2S busses, allowing data to
be transmitted to the DAC at a different rate than it is received from CD and also allowing CD Audio disks
to be played directly to the DAC without processor involvement.

If the CD_ENHANCED bit in CD_FLOW is left clear after reset, the data path is controlled automatically
by the INTERNAL bit in the SMODE register, allowing Jaguar 1 compatibility. The only functionality lost
compared to Jaguar1 is that peripherals on the Expansion bus can no longer be slaves. $0010 should be
written to CD_FLOW by the Boot ROM to enable SCK,WS as outputs.

Frequently-used configurations are shown overleaf, with the corresponding CD_FLOW value (in these
examples, the second nibble of CD_FLOW is assumed to be zero, although it could take other values).

Page 72 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

“ Audio Out Compatible” Mode

No CD-ROM connected (or it is disabled). DAC driven by DSP. Puck is bus-master.

SMODE $0005 (INTERNAL=1). Set SCLK for desired sample-rate.

CD_FLOW $0000 (COMPATIBLE)

Puck

txd

xqws

sck

rxd

ws2

sck2

DAC

ws

DSP CONNECTOR

i2rxd

sck2

ws2

i2txd

i2swsinv
muteL

sck

ws
wsin

wsout

sckin

sckout

i2sck2en

i2srx2en

i2sbypass

internal

i2soe

i2soe

1

0

internal

1

0

RRXD

DSP

CD DMA LRXD

RTXD

LTXD

SCKGEN

WSGEN

1 0

0 1

01

i2sck2en

1

0

0

1

i2swsdelL

“ CDROM In Audio Out Slaved Compatible” Mode

CDROM read via registers or CD DMA. DAC driven by DSP. CDROM is bus-master.

SMODE $0000 (INTERNAL=0)

CD_FLOW $0000 (COMPATIBLE)

Puck

txd

xqws

sck

rxd

ws2

sck2

DAC

ws

DSP CONNECTOR

i2rxd

sck2

ws2

i2txd

i2swsinv
muteL

sck

ws
wsin

wsout

sckin

sckout

i2sck2en

i2srx2en

i2sbypass

internal

i2soe

i2soe

1

0

internal

1

0

RRXD

DSP

CD DMA LRXD

RTXD

LTXD

SCKGEN

WSGEN

1 0

0 1

01

i2sck2en

1

0

0

1

i2swsdelL

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 73

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

“ CDROM In Audio Out Independent” Mode

CDROM read via registers or CD DMA (CD is master). DAC driven by DSP (Puck is master). Input and
output are completely separate.

SMODE $0005 (INTERNAL=1). Set SCLK for desired sample-rate.

CD_FLOW $0005

3 2 1 0
CD_I2SBYPASS CD_I2SRX2EN CD_I2SCK2EN CD_ENHANCED

0 1 0 1

Puck

txd

xqws

sck

rxd

ws2

sck2

DAC

ws

DSP CONNECTOR

i2rxd

sck2

ws2

i2txd

i2swsinv
muteL

sck

ws
wsin

wsout

sckin

sckout

i2sck2en

i2srx2en

i2sbypass

internal

i2soe

i2soe

1

0

internal

1

0

RRXD

DSP

CD DMA LRXD

RTXD

LTXD

SCKGEN

WSGEN

1 0

0 1

01

i2sck2en

1

0

0

1

i2swsdelL

“ CD Audio Bypass” Mode

Audio from CD plays straight-through to DAC without CPU intervention. CD is bus-master of both buses.
Audio data can be read simultaneously via registers or CD DMA if desired.

SMODE $0005 (INTERNAL=1).

CD_FLOW $000F

3 2 1 0
CD_I2SBYPASS CD_I2SRX2EN CD_I2SCK2EN CD_ENHANCED

1 1 1 1

Puck

txd

xqws

sck

rxd

ws2

sck2

DAC

ws

DSP CONNECTOR

i2rxd

sck2

ws2

i2txd

i2swsinv
muteL

sck

ws
wsin

wsout

sckin

sckout

i2sck2en

i2srx2en

i2sbypass

internal

i2soe

i2soe

1

0

internal

1

0

RRXD

DSP

CD DMA LRXD

RTXD

LTXD

SCKGEN

WSGEN

1 0

0 1

01

i2sck2en

1

0

0

1

i2swsdelL

Page 74 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Network UART

Puck contains a simple asynchronous serial UART intended as a serial network interface (like ComLynx)
or as a serial communications port (RS232 or MIDI). The serial interface consists of two wires, UARTI, the
receive data input and UARTO the transmit data output.

A prescaler register is used to allow a wide range of programmable baud rates. The highest baud rate
possible is the system clock divided by thirty-two.

The data transmitter is double buffered, allowing a character to be written into the data register before the
transmission of a previously written character is complete. The data receiver is also double buffered, a
second character can be received on the UARTI pin before the previous character has been read from
the data register.

Data is transmitted and received in the formats shown below:

0 1 2 3 4 5 6 7

one
start
bit

8 data bits
parity
bit

one
stop
bit

0 1 2 3 4 5 6 7

one
start
bit

8 data bits

one
stop
bit

Receive format when NOPAR is set:

Normal transmit/receive format

The parity can be ODD, EVEN or none. The polarity of both the output and the input can be programmed
to be active high or low. The polarity shown is active low. The transmitter can be programmed to transmit
a stop bit in the parity position, and the receiver can be programmed into not expecting a stop bit at all,
supporting the standard 8-bit, no parity, one stop bit format.

Two classes of interrupt can be generated by the asynchronous serial interface, namely receiver or
transmitter interrupts. Each of these classes can be individually enabled. The table below summarises the
interrupts in each class.

Receiver Interrupts.

• Parity Error

• Framing Error

• Overrun Error

• Receive Buffer Full

Transmitter Interrupts

• Transmit Buffer Empty

The UART is accessible either as part of the normal 16-bit IO interface, or within the RCPU internal
space. If RCPU control of the UART is enabled, then the transmit and receive data buffers can be long
words if required, reducing the overhead required for sending bursts of data.

ASICLK Asynchronous Serial Interface Clock F10034 R/W

This sixteen bit register determines the baud rate at which the asynchronous serial interface works. The
frequency generated is given by:

 Clock Frequency = System Clock Frequency / (N+1)

where N is the number written to this register.

The frequency generated by this register is further divided by sixteen to give the baud rate.

ASICTRL Asynchronous Serial Control F10032 WO

Bit Name Description
0 ODD Writing a 1 to this bit selects odd parity
1 PAREN Parity enable. When parity is disabled the value of the ODD bit is

transmitted in the parity bit time.
2 TXOPOL Transmitter output polarity. Setting this bit to a one causes the

UARTO output to be active low.
3 RXIPOL Receiver input polarity. Writing a one to this bit makes the UARTI

into an inverting input.
4 TINTEN Enables transmitter interrupts. Note that the asynchronous serial

interface bit in the Interrupt Control Register also needs to be set
to enable interrupts.

5 RINTEN Enables receiver interrupts. As for TINTEN the asynchronous
serial interface bit in the Interrupt Control Register must also be
set.

6 CLRERR Clear Error. Writing a one to this bit clears any parity, framing or
overrun error condition.

14 TXBRK Transmit break. Setting this bit causes a break level to be
transmitted on the UARTO pin. It forces the UARTO output active.
This may be high or low depending on the state of the TXOPOL
bit.

All unused bits are reserved and should be written 0

ASISTAT Asynchronous Serial Status F10032 RO

Bit Name Description
0-5 These bits reflect the state of the corresponding bits in the

ASICTRL register.
7 RBF Receive buffer full. When set this bit indicates that a character has

been received and is available in the ASIDATA register.
8 TBE Transmit Buffer Empty.
9 PE Parity Error. This bit indicates that a parity error occurred on a

received character.
10 FE Framing Error. A framing error is detected when a non zero

character is received without a stop bit at the expected time.
11 OE Overrun Error. An overrun error is detected when a character is

received on the input before the last character was read from the
ASIDATA register.

13 SERIN Serial Input. This bit reflects the state of the UARTI pin. Its sense
can be inverted by setting the RXIPOL bit in the ASICTRL register.

14 TXBRK Transmit Break. This bit reflects the state of the corresponding bit
in the ASICTRL register.

15 ERROR Error. This bit is logical OR of the PE, FE and OE bits. This allows
a single test for error conditions.

All unused bits are reserved and may return any value.

ASIDATA Asynchronous Serial Data F10030 RW

When this register is read it returns the last character received in bits [0..7] and zero in bits [8..15]. The
act of reading this register clears the receive buffer full condition leaving the way clear for subsequent
characters to be received.

When the ASIDATA register is written bits [0..7] are transmitted from the UARTO pin. Bits [8..15] are not
used and should be written as zero.

RCPU Extended UART Control F1813C Read/write

This register supplements the ASICTRL register at F10032, and both registers must be initialised before
the UART is used.

Bit Name Description

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 75

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

0 ERROR When read, this bit indicates that one of the error bits below is
set. Writing a one to this bit clears all the error flags. Writing a
zero has no effect.

1 BYTE_INT When this bit is set, the RCPU is interrupted after each byte is
received. When this bit is clear, it is interrupted when four bytes
have been received.

2 RX_INT When this bit is set, receiver interrupts are enabled. An interrupt
is generated at the rate determined by BYTE_INT. The status of
this bit is reflected by a read.

3 TX_INT When this bit is set, transmitter interrupts are enabled. An
interrupt is generated whenever the transmit buffer is empty. The
TX_BYTE bit below controls whether this is after one or four
bytes. The status of this bit is reflected by a read.

4 NOPAR When this bit is set, the receiver no longer expects to receive a
parity bit. This allows the standard 8-bit, no parity, one stop bit
format to be received. It has no effect ion the transmitter, so to
transmit this format you should ensure the transmitted parity bit
corresponds to a stop bit. This bit also applies to the IO interface.
The status of this bit is reflected by a read.

5 TX_BYTE Set this bit to transmit single bytes. If this is set only the first byte
is transmitted. The status of this bit is reflected by a read.

6 RCPU_TRANSMIT Set this bit if the RCPU is to control the UART transmit interface.
If this bit is clear, the normal IO interface controls transmit. The
status of this bit is reflected by a read.

7 RCPU_RECEIVE Set this bit if the RCPU is to control the UART receive interface.
If this bit is clear, the normal IO interface controls receive. The
status of this bit is reflected by a read.

16 OVERRUN_ERROR This error flag indicates that the four byte receive buffer has
overflowed and receiver data has been lost. This bit is read only.

17 FRAMING_ERROR This error flag indicates that a framing error occurred on received
data. The UART will cease operation until the error is cleared.
This bit is read only.

18 PARITY_ERROR This error flag indicates that received data has a parity error. The
UART will cease operation until the error is cleared. This bit is
read only.

19-21 BYTES_IN_BUF This value indicates how many bytes are present in the UART
receive data buffer. Valid values are 0-4. Even if the receiver is in
byte mode (BYTE_INT set), further values will be added to the
buffer until the long overflows. This value is read only.

22-24 BYTES_LAST_READ This value indicates how many bytes were present the last time
the receive data buffer was read. As it is not possible to read the
receive data buffer and the BYTES_IN_BUF value atomically, the
counter is latched whenever a read occurs and the value stored
here.

25 RX_INT_FLAG The current interrupt was caused by the receiver. This bit is read-
only.

26 TX_INT_FLAG The current interrupt was caused by the transmitter. This bit is
read-only.

RCPU UART Data F18140 Read/write

This long location contains a long write-only transmit data buffer, and a long read-only receive data buffer.
For a full discussion of the UART, refer to the section on it below. These buffers are big-endian, this
means that the byte order of transmission or reception is as follows.

Bits Order
24-31 first byte
16-23 second byte
8-15 third byte
0-7 fourth byte

If the interface is being operated in byte mode, then the byte should be read from or written to bits 0-7.
However, note that if read overflow occurs (which is not flagged as an error in any case until the buffer
contains four bytes), then the bytes will be shifted up in the long buffer as they are received. This means

that a byte mode RCPU UART receiver actually has nearly four byte times to respond to the interrupt, a
truly massive latency were it to ever occur!

Joystick Interface

Puck has four outputs which together control four external TTL ICs to provide the joystick interface. There
are two registers

JOY1 Joystick register F14000 RW

When read the joystick input buffers are enabled and the data reflects the state of the sixteen joystick
inputs. Output JOYLO is asserted (active low) during the read.

When written the low eight data bits are latched into the joystick output latch. Output J0YL2 is asserted
(active low) during the write. The most significant bit (15) is used to enable the joystick outputs. This bit is
cleared (disabled) by reset. Output J0YL3 is the inverse of the value in bit 15.

J0Y2 Button register F14002 RW

When read the button input buffer is enabled and the data reflects the state of the four button inputs.
Output J0YL1 is asserted (active low) during the read.

There are two joystick connectors each of which is a 15 pin high density 'D' socket. The pinouts are as
follows:

PIN J5 J6
1 JOY3 JOY4
2 JOY2 JOY5
3 JOY1 JOY6
4 JOY0 JOY7
5 NC NC
6 BO/LP B2
7 5 VDC 5 VDC
8 NC NC
9 GND GND
10 B1 B3
11 J0Y11 J0Y15
12 JOY10 JOY14
13 JOY9 JOY13
14 JOY8 JOY12
15 NC NC

The JOYx signals correspond to bit x on the joystick port. All the joystick signals can be used as inputs.
Signals JOY0 to J0Y7 can also be used as outputs. The direction of these signals is determined by bit15
of the joystick output port. If bit 15 is set JOY0 to JOY7 are outputs. All joystick signals are pulled up with
resistors. Signals B0 to B3 are bits 0 to 3 on the button port. The LP signal is a light-gun input, a high
level on this input transfers the current horizontal and vertical counts to the light-pen registers.

General Purpose IO Decodes

Puck has six general purpose IO decode outputs which are asserted (active low) in the following address
ranges.

GPIO0 F14800-F14FFFh CD-interface

GPIO1 F15000-F15FFFh DMA ACK

GPIO2 F16000-F16FFFh Cartridge

GPIO3 F17000-F177FFh

GPIO4 F17800-F17BFFh

GPIO5 F17C00-F17FFFh Paddle Interface

The term "General Purpose" is a misnomer because most of the outputs are reserved.

Page 76 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual – Revision 6

26 October, 2002 CONFIDENTIAL
TM

 © 1992, 1993, 1994, 1995 ATARI Corp

Appendices

The COBWEB Development Board

All development systems currently being shipped (on August 1995), are Cobweb boards. You should read
these notes before using it.

The Cobweb board is a prototype development board for Midsummer which has the Oberon β-test ASIC
from Midsummer and the Jerry ASIC from Jaguar One. This system is intended to allow some software
development to start before the availability of Puck. The Oberon β-test ASIC is not the final production
version of Oberon, and is both slower and buggier then the production silicon.

Developers using this board should be aware of the following limitations and other issues:

1. The Oberon β-test ASIC only runs at 26.6 MHz, and even at this speed requires forced cooling.

2. Because Jerry is fitted, the Jaguar One DSP load and store limitations still apply (and all other
Jerry/DSP bugs).

3. This is a development board - there are likely to be un-discovered bugs in it.

4. The development environment currently available is that of Jaguar One (but it does all seem to
work!).

5. The video and audio quality may be poor

Because Puck is not present, the following features described in this document are not present:

1. The RCPU

2. The DSP enhancements over Jaguar One, including the PCM engine

3. The CD DMA channel

The GPU and Blitter enhancements, including texture mapping, are all present. Please refer to the bugs
list below, or a more up-to-date version from Atari, for problems present in this Oberon β-test ASIC.
These should not be present in the production version.

Data Organisation - Big and Little Endian

The Jaguar system is intended to be used in either a little-endian, e.g. Intel 80x86, or big-endian, e.g.
680x0, environment. The difference between these two systems is to do with the way in which bytes of a
larger operand are stored in memory. There is potential for considerable confusion here, so this section
attempts to explain the differences.

When storing a long-word in memory, a big-endian processor considers that the most significant byte is
stored at byte address 0, while a little-endian processor considers that the most significant byte is stored
at byte address 3. When both 32 bit processors are fitted with 32 bit memory this is not an issue for the
memory interface, as the concept of byte address has no meaning; where it does become a problem is
when the data path width is narrower than the operand width.

This document adopts the big-endian convention and Motorola operand ordering convention. Little-endian
and Intel operand conventions could equally well have been applied.

IO Bus Interface

The IO Bus Interface is a 16 bit interface. Therefore, 32 bit data such as addresses will be presented
differently between the little-endian and big-endian systems. What happens, in effect, is that the sense of
A1 is inverted between the two systems. A big-endian system will see the high word of long-word at the
low address, a little-endian system will see the high word at the high address.

Co-Processor Bus Interface

As the co-processor bus interface is 64 bits wide, there is no problem regarding big and little endian
systems, although graphics processor programmers should always use byte, word, or long-word transfers
as appropriate to the operand size to avoid having to be aware of whether the CPU is big or little endian.

Pixel Organisation

One side effect of the big or little endian philosophies is with regard to the organisation of pixels within a
phrase.

In the little-endian system, the left-most pixel is always the least significant. In a phrase of data the left-
most pixel includes bit 0. In byte address terms, this is in byte 0.

0 7 8 15 48 55 56 63

left right
 In the big-endian system, the left-most pixel is always the most significant. The left-most pixel therefore
always includes bit 63. In byte address terms this is stored in byte 0.

0781548555663

left right
Consider an eight bit per pixel mode:

- in pixel mode, the left-most pixel in both systems is at byte address 0.

- in phrase mode, the little-endian left hand pixel is on bits 0-7, the big-endian left hand pixel is
on bits 56-63.

(these modes refer to Blitter operation, which is described elsewhere)

This difference therefore affects operations that involve addressing pixels within a phrase when
transferring a whole phrase at once (Blitter phrase mode).

Oberon and Puck Bugs List

“If we shadows have offended,
Think but this, and all is mended,
That you have but slumber'd here
While these visions did appear.
And this weak and idle theme,
No more yielding but a dream,

Gentles, do not reprehend:
if you pardon, we will mend:”

 Act V. Scene 1.

This document lists the known bugs in the Oberon and Puck devices. This is revision code 3 silicon.

Level

3 This bug completely prevents some part of the ASIC from operating. Some functionality
cannot be demonstrated, and further bugs could be obscured.

2 This bug can be fixed to some extent by a software or hardware work-around. The
functionality may still be impaired but is demonstrable.

1 This bug can be fixed by a simple software or hardware work-around with no significant
loss of functionality or performance.

The reference to hardware or software in bugs indicates who it affects.

Oberon Bugs

1 Carried Over 68K Bus Interface Bugs

These bugs we inadvertently carried over from Tom:

Level 1 hardware

Description When the 68000 is slow to retract BGL and Oberon performs a very short bus cycle, it
can see the trailing edge of BGL at the start of the next BRL operation and erroneously
assume that it has the bus.

Work-round Filter BGL through a flip-flop set on the falling edge of BGL, and cleared synchronously

Midsummer Technical Reference Manual – Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 77

© 1992, 1993, 1994, 1995 ATARI Corp.
TM

 CONFIDENTIAL 26 October, 2002

by BGACKL.

Level 1 hardware

Description Oberon can retract BRL too quickly.

Work-round Stretch the trailing edge of BRL by one clock cycle.

2 GPU: DMA from the register file does not give the right data

Level 1 software

Description If the DMA engine is set to transfer the register file into external memory, it does not read
the data correctly (this only works anyway if GO is clear).

Work-round Read the data by any other practical means.

3 GPU: DMA into the GPU RAM fails if the bus is lost

Level 2 software

Description When the DMA engine is transferring data into GPU RAM, and the bus is lost during the
transfer, then values van be repeated within GPU RAM. This means that the data is no
use.

Work-round Ensure that the DMA engine does not lose the bus during the transfer. This can be done
by disabling refresh across the transfer, and ensuring that no higher priority bus master
can use the bus - refer to the bus arbitration description on page Bus Arbitration5.

4 Blitter: Interpolated Pixel Math Errors

Level 2 software

Description When the blitter is anti-aliasing texture data, it appears that the interpolation math can
cause the values to be one less than they should be under some circumstances. This
results in a visible problem when CRY color values are reduced by one, even when
mixing four pixels with the same color value.

Work-round Only certain textures show the problem, so either choose your textures carefully, or do
not use the anti-aliasing.

