AGUA;

MIDSUMMER

Technical Reference
Manual

26 October, 2002
Revision 6
Atari Corp.

ATARI

Title: "Midsummer Technical Reference Manual"
(Revision 6)

IAuthor and generous donor: John Mathieson
Donated to: Cédric "QueST" Laguerre
Downloaded on the Toxic-Mag site:
http://toxicmag.atari.org/

Titre : "Midsummer Technical Reference Manual"
(Revision 6)

IAuteur et généreux donateur : John Mathieson
Don a titre personnel a : Cédric "QueST" Laguerre
Téléchargé sur le site du Toxic-Mag :
http://toxicmag.atari.org/

Cédric "QueST" Laguerre
wrathchild_@yahoo.fr

Page 2

THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Table of Contents

Introduction 3
Regarding This DOCUMENTALION..........cciiiiiieiiiieiieie e 3
What is Midsummer? .
Midsummer Overview.

Video Generator and Object Processor 8
Overview.
Object Processor Performance ...
Memory controller
Microprocessor Interface
Memory Map
Object definitions
Description of Object Processor/Pixel path.

Refresh Mechanism8

Interrupts BT P PSPPI UPTPRPRPPRON 8
Colour Mapping

Introduction

The CRY Colour Scheme
The Jaguar RISC Processors
What is a Jaguar RISC Processor?
Programming the J-RISC Processor.
Design Philosophy...
Pipe-Lining
Memory Interface.....
Load and Store Operations ..
DMA Controller...........
Arithmetic Functions
Interrupts
Sharing Hardware....
Program Control Flow .
Multiply and Accumulate Instructions
Matrix Multiplies....
Divide Unit
Register File
External CPU Access.
Pack and Unpack
Instruction Set
Writing Fast J-RISC Programs....
Graphics Processor - GPU
Memory Map
Internal Registers ...
RISC Central Processor - RCPU
Cache Controller
RCPU Memory Map
Internal Registers
Digital Sound Processor - DSP
Introduction
Memory Map...
Circular Buffer Management
Private Memory Interface and PCM Processor
Blitter
What is the Blitter?.........
Programming the Blitter..
Blitter Register Set
Address Generation ...
Data Path
Bus Interface ..
Controlling State Machines
Register Description...
Address Registers
Control Registers..
Data Registers.........
Texture Unit Control Registers
Modes of Operation....

Puck

Appendices

POIYGON DIAWING ...ttt e e e 8
TEXIUIE MAPPING ..ttt ettt 8

MEMOTY CONEFOIET ...ttt 8
Frequency dividers
Programmable Timers ..
Interrupts
Synchronous Serial Interface
Synchronous Serial Receiver / Transmitter ..
CD DMA Controller
Network UART.
Joystick Interface ...

General Purpose 10 Decodes.

The COBWEB Development Board
Data Organisation - Big and Little Endian..
Oberon and Puck Bugs List
Oberon Bugs

26 October, 2002 CONFIDENTIAL

A

ATARI

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 3

Introduction

Midsummer is the project name for the second generation Jaguar system (Jaguar Two).

This document is the Midsummer Technical Reference Manual - it is a definitive reference work for the
programmer's view of the Midsummer chips. It is neither a hardware designer’s reference work nor a
guide to the Jaguar console. It is written by the hardware designers, and so is not ideal as an introduction
to Midsummer or an explanation of how best to use it, but it should be used as the definitive reference
work.

Regarding This Documentation

This document is still work in progress. It was based on the equivalent Jaguar One document and may
still contain information that is no longer true. It may also have errors, omissions and things that are not
clear. If so, | want to know if you find any. | apologise to my British readers for the encroachment of
American spelling.

What is Midsummer?

“More strange than true. | never may believe
These antique fables, nor these fairy toys.”

Act V. Scene 1.

Midsummer is based around a pair of custom chips, called Oberon and Puck, which are primarily
intended to be the heart of a mega high-performance computer for games and leisure. Oberon and Puck
replace Tom and Jerry from the original Jaguar system.

Oberon is the King of the fairies and Puck is Robin Goodfellow, his side-kick, from “A Midsummer Night's
Dream” by William Shakespeare.

Midsummer Overview

Midsummer is an evolutionary development of Jaguar to give significant performance gains for 3D games.

It offers greatly improved performance for a small increase in system cost. It is intended to be software
compatible with Jaguar and so will run the existing library of games. The following areas of the system
have substantially improved performance:

. polygon rendering speed
. texture mapped polygons
. computational ability

. audio synthesis

Midsummer is intended to be easy to program in a high-level language. It has an additional RISC
processor, the RCPU, with an instruction cache to improve the performance of C programs.

This diagram summarises the system architecture of Midsummer. It does not show the peripheral
connections, or the 68000, which is still present only for compatibility reasons and to boot the system.

Object Processor
64-bit display generator

64-bit DMA to main bus
| 1K data RAM |_

|

|

|

ES T e P |
Y 32-bit RISC processor |

T

|

|

|

|

GPU
32-bit RISC processor
64-bit DMA to main bus =

Main Bus
64-bit 133 Mbyte/sec

8K texture buffer Blitter - 64 bit co-processor
Texture rendering engine
Polygons rendered in hardware[™T | DRAM

Z-buffering, anti-aliased texture| : ——1 2 Mbyte (4 Mbyte possible)
| 64-bit DRAM or 16-bit SDRAM
|

8K texture ROM

Audio Sub-System

DSP

|

I
|

I
|

I
‘ l

| 32-bit RISC processor

| 8K program/data RAM 64-bit DMA to main bus ‘

I
‘ l
: 16-bit stereo audio |
?’ I

I
I

I
I

I
I

I
|

I
|

I
|

I
I

I

Buffered expansion bus
up to 6 Mbyte ROM cartridge
CD-ROM drive (optional)

DSP external sample memory
up to 1 MB DRAM or ROM

The main system bus is 64-bit, and the object display processor and blitter are both 64-bit co-processors
on this bus.

The RCPU, GPU and DSP are all based on the same Jaguar RISC architecture. All three processors are
32-bit RISC, executing close to one instruction per clock cycle. They are tuned for graphics and audio
processing; and offer single cycle multiply operations as well as normal RISC functions.

RCPU

The RCPU is new for Midsummer, and has been specifically tuned for running C code. It is intended to
act as the CPU of the system, and is the geometry engine for 3D graphics.

. 32-bit RISC processor

. 4K bytes of 2-way set-associative cache

. 1K bytes fast local data RAM

. cache line fill operations at the full 64-bit bus rate (133 MB/s)

. extended precision (16 x 32) single cycle multiplier, and fast divider
. 64-bit DMA engine to and from system DRAM at full bus rate

GPU

The GPU and Blitter are the rendering engine for 3D graphics. The GPU is very similar to the RCPU, and
is coupled on a fast local 32-bit bus to the blitter. The GPU is intended to calculate blitter polygon
parameters while the blitter is operating.

. 32-bit RISC processor

. 4K bytes of fast local program/data RAM

. 8K bytes of RAM either for texture buffers or for further program/data RAM
. single cycle multiplier, and fast divider

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

ﬁw& CONFIDENTIAL 26 October, 2002

Page 4 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

. DMA engine to and from system DRAM at full bus rate
Blitter

The Blitter is a 64-bit rendering engine. It can render triangles as a single operation, and these triangles
may be any combination of Gouraud shaded, texture mapped and Z-buffered.

. 64-bit flexible rendering co-processor

. 8K bytes of texture buffer RAM (can be shared with GPU)

. 8K bytes of generic texture ROM

. texture mapping from local texture buffer or from main memory

. triangle draw as a single operation

. Z-buffering

. anti-aliased texture mapping (bi-linear interpolation)

. true-perspective texture mapping

. Gouraud shading, fog effects, colour blending and alpha-mixing all possible on texture data

Object Processor

The Object Processor is a very flexible 64-bit list processor which generates the display. It builds the
display in a local line buffer from multiple bit-maps, which may be at different color resolutions. It can
perform scaling, shading and fog effects on bit-map data. It can behave like a traditional sprite engine, but
is far more flexible and programmable.

. 64-bit display generator
. up to 24-bits per pixel
. supports bit-maps at mixed color depths

. smooth image scaling (8.8 bit resolution)
. bit-map darkening, lightening and fog effects
. supports RGB or CRY color schemes

The CRY color scheme uses 8-bits for intensity and 8-bits for chroma, allowing smooth Gouraud shading
from 16-bit pixels.

DSP

The DSP is a 32-bit RISC processor, based on the same RISC core as the GPU and RCPU. It contains a
local PCM sample generator coupled to private sample memory which can generate 24 voices at 44 KHz
in parallel with the flexibility and power of the DSP.

. 32-bit RISC processor
. 8K bytes of fast local program/data RAM

. single cycle multiply/accumulate, with 40-bit accumulator precision
. PCM sample generator from private memory, up to 1 Mbyte DRAM or ROM
. PCM samples can be interpolated 8-bit, 16-bit and 8-bit p-law compressed samples

. synchronous serial interface to CD quality DAC
. 64-bit DMA engine to and from system DRAM at full bus rate

System Performance

The Midsummer system is intended to be run from a 33 MHz clock. This figure is not yet confirmed, and
could possibly be higher or lower. At 33 MHz the main system bus has a sustained burst rate of 133
Mbytes / sec. Assuming 16-bit pixels, which may be RGB or CRY, the blitter and object processor can
both write and read pixels at 66 Mpixels/second.

This gives the blitter a shaded, texture-mapped polygon rate of 750K polygons/second. This assumes a
10x10 triangle containing 50-pixels. Of course, realistic system performance will be lower as this assumes
no overhead for computation or for display generation time.

The Jaguar RISC processors can execute one instruction per clock cycle. They therefore have a peak
instruction through-put of 33 MIPs, and a realistic performance level of 25-30 MIPs. This gives a
combined system performance approaching 100 MIPs, as all three processors run in parallel from local
memory. They can also execute code from main DRAM, although only the RCPU is well suited to this as
it has an instruction cache.

Each of the RISC processors contains a 64-bit DMA engine which can transfer data to and from their local
RAM at the full bus rate of 133 MB/sec. The data stream from the CD, if present, can be DMA transferred
in system DRAM. Many other small but significant improvements have been made, and some restrictions
and bugs in Jaguar have been removed.

Midsummer compared to Jaguar

Midsummer is closely based on the original Jaguar system. It is intended to be software compatible with
it, and is a superset of the Jaguar system. It uses newer technology to speed up the Jaguar system,
address short-comings in its architecture, and to make major improvements to the specification.

Large parts of this documentation cover areas of the design that have not changed, so you should look
out for the following changes:

1. There is an additional Jaguar RISC (J-RISC) processor, known as the RCPU, with a simple program
cache. It is intended to perform the functionality of the CPU, acting as a geometry engine, and it is
well suited to executing compiled code.

2. The blitter can now draw polygons as a single operation. These may be just filled, or any combination
of Gouraud shaded, Z-buffered, and texture mapped.

3. The blitter can now draw texture maps at full bus speed [0 a maximum of one phrase per two clock
cycles, from internal texture memory, and can also operate from external texture RAM more
efficiently then before.

4. The blitter can anti-alias textures as it renders them.

5. The texture mapping and Gouraud shade modes can be combined to give shaded texture-mapped
polygons, with Z-buffering as well if required. These can also be drawn at full bus speed. The
shading is a multiplicative mix of the texture data and another colour, allowing lightening, darkening,
distance-haze and other effects.

6. The intensity calculations are now carried out with an extended range, using an eleven bit signed
integer to represent intensity, this value being clipped (saturated) only when the pixels are drawn.

7. A subset of the blitter registers are double-buffered, so that a polygon drawing engine can program
the parameters for a polygon blit while the previous blit is still under way.

8. There is no need to initialise all four | and Z values (or texture pointers) for a phrase mode blit, the
blitter can automatically initialise them appropriately.

9. The blitter address generators now both have clip window and mask functions. Formerly A1 had a
clip window and A2 had a mask.

10. The GPU has an overflow flag which reflects signed arithmetic overflow from add or subtract
operations, and also gives the state of the bit modified by bit clear and set operations before the clear
or set.

11. The jump condition codes have been extended to cope with the new overflow flag, and now include
all the conditions available on general purpose micro-processors, e.g. the 68000.

12. The NOP instruction has been extended, so that if its operands are not zero then it becomes an
unconditional jump relative with a ten bit signed jump offset, giving an increased range.

13. Byte and word transfers to GPU RAM are now possible.

14. The J-RISC processors all contain a simple DMA transfer engine, which allows full bus rate phrase
mode transfers between internal and external memory. This speeds up program loads and data set
transfers.

15. The PACK and UNPACK instruction can now operate on RGB16 pixels as well as CRY.

16. The object processor can now clip at a right hand side value of less than 720 by setting the limit
register.

17. The object processor can force the select bit for mixed CRY/RGB screens on a per-object basis.
18. The object processor supports line-doubling so that a TV picture can be displayed on a VGA monitor.

19. The object processor can multiplicatively mix the pixel color with a “fade to” color according to a mix
control value. A new object type defines the mixer control value and the mixed color.

20. RMW objects can now have double the “strength”.

21. Scaled objects may now be controlled to a higher precision, and the horizontal remainder may now
be defined.

22. Some additional extended jump condition codes allow debug functions, such as interrupt, stop and
pause.

In addition, some bugs that created problems for Jaguar One programmers have been fixed:

1. Score-board protection for writes is available, so that writes do not occur out of order. This is enabled
by the GPU enhanced mode bit.

2. GPU code can be executed out of external RAM.

The blitter address flags for Y add control are now properly differentiated, there is an enable bit in the
Collision control and Mode register that has to be set to fix this bug.

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 5

4. The data register of an indexed store instruction now has full score-board protection.

5. Problems related to MOVEI instructions at the beginning of a program, particularly when single
stepping, have been resolved.

6. Unscaled objects are now fetched at full bus speed.

7. The pixel pre-scaler is now reset on the last line of the display, so the display need not be over-
scanned to conceal it.

8. Two divides may follow each other when one uses the quotient of another.

9. The DSP external DMA interface has been completely overhauled, and will now support low and high
priority transfers; as well as arbitrary load/store combinations and alignments.

10. A variety of problems related to blitter window clipping have been resolved.

Jaguar Terminology

The computer world has launched into the 64 bit era without a sensible naming convention for a 64 bit
datum. Double-long-word is ridiculous and confusing. We therefore refer to 64 bits of data as a phrase.
This is logical and short. In Jaguar the various sizes of data are named as follows:

Bits Name

4 Nibble [
8 Byte 1

16 Word
32 Long [1 1 1 |
64 Phrase [1 1 1 1 1 1 1 |

You may be used to calling 32 bits a long-word, or sometimes just a word. We call it a long word too
sometimes, but usually just long for short! As far as | know, nobody else uses phrase or has a better
name for it.

Memory

The Midsummer system has a 24 bit address bus, and so has a 16 Megabyte address range. This space
contains the DRAM, cartridge ROM, boot ROM, on-chip SRAM and hardware registers. These have a
variety of speeds and data bus widths, so the memory controller is flexible enough to support bus masters
(processors) from 16 to 64 bits, and memory widths from 8 to 64 bits. All the processors can access all of
the memory, and so there is a single system wide memory map. The processor do not usually have to be
aware of the memory width, as the memory controller will take care of this for them.

The main system bus, which is connected to the DRAM and ROM as well as to both the ASICs and the
68000, can only be owned by one processor at a time. It is therefore a precious resource, and should be
shared carefully so that all the processors can make use of it. This is not too big a problem, as the bus is
very fast. 64 bit DRAM can be read from or written to every two clock cycles within the same DRAM page,
so the transfer rate is 106 MB/sec at the Jaguar One clock speed of 26.6 MHz.

The three J-RISC processors all have private internal busses, so they can access their local memory
without using the main bus, allowing them to execute in parallel with the main system.

Bus Arbitration

Bus ownership is controlled by the bus arbiter. A processor requests the bus, and if the current owner is
at a lower priority level than the requesting processor, then the current owner loses the bus at the end of
the current memory cycle, and the requesting processor is granted the bus. When this higher level
processor has completed its transfer(s) it releases its request, and the bus is handed back to the lower
priority processor. If a higher priority processor has the bus, then the requesting processor has to wait.
The J-RISC processors can have pending data transfers in the background to some extent (i.e. execution
continues), but ultimately they will get held up in these circumstances.

The bus is prioritised as follows:
Highest priority
1. Refresh

CD DMA at high priority

2.
3. DSP at DMA priority
4 RCPU at DMA priority

5. GPU at DMA priority

6. Blitter at high priority

7 Object Processor

8. CD DMA at normal priority

9. DSP at normal priority

10. RCPU at normal priority

11. RCPU cache fetches at high priority
12. CPU under interrupt

13. GPU at normal priority

14. Blitter at normal priority

15. RCPU cache fetches at normal priority
16. Bus hold by the cache controller (no fetches occur)
17. CPU

Lowest priority

Efficient use of this bus is important to getting the best performance out of the Midsummer system. Video
and Audio present real time requirements; the object processor must complete processing the object list
within one video line, and audio sample and control data may need to be fetched within one sample
period. The allocation of priority levels where these are selectable should be made carefully, and may
require some thought and experimentation.

Dynamic RAM

The main RAM in the system is one or two banks of sixty-four bit wide dynamic RAM. Currently the
system contains a single two megabyte bank of DRAM. This RAM is currently fast page-mode DRAM,
which means that within a page transfers can be made very rapidly.

DRAM is organised internally in a rectangle of storage elements, each holding one bit. These bits are laid
out in rows and columns. A row read involves transferring an entire row of bits from the main storage area
into a local row buffer in the DRAM, from which the bits in the required column are selected. This row
read is relatively slow, because the transistors in the main storage area are small and therefore weak.
Once a row is in the local buffer, bits from different columns within it can be selected much more rapidly.
In the current system, reading or writing data from a new row takes five clock cycles, while reading or
writing data from the same row as the previous transfer takes two clock cycles. Each row in the current
implementation contains 2048 bytes, and these are usually referred to as pages.

The DRAM is used most efficiently when most transfers are in the same page as the previous transfer.
This suits video fetches, which are normally consecutive pixel reads; it suits blitter screen clears, shaded
polygons, and textured polygons from internal memory; and it suits the DMA controllers in each of the J-
RISC processors. It does not suit things like blitter copies which perform successive reads and writes
from locations that are not in the same DRAM page. The most efficient way to move a linear block of
memory is not to blit it, but to use one of the J-RISC processor DMA controllers to transfer it into local
RAM, then to transfer it out again to the new location.

The system will give you the most memory bandwidth, and therefore the best performance by one
measure, if DRAM transfers are mostly within the same row as the previous cycle, and are mostly sixty-
four bit.

Cartridge and Boot ROM

Compared to DRAM, ROM is slow and narrow. The boot ROM is only eight bits wide, and cartridges are
typically thirty-two bits. ROM is much slower then DRAM, especially compared to page mode transfers.
ROM is best used as a storage medium when you can, with its contents being transferred into DRAM
before use.

10 Space - on-chip registers and memory

All the registers and memory in the ASICs, as well as the joystick and other 10, are memory-mapped
within the 16 Mbyte address space. They are accessed over the internal 10 bus. This is a separate
sixteen bit bus within the ASICs, and its speed is separately controllable and may have to be changed
dynamically depending on the peripheral.

Certain 10 locations within Oberon may also be written to as thirty-two bit locations, this is discussed later.
J-RISC Processor Local Space

The J-RISC processors each have a local internal thirty-two bit bus. These busses run in parallel with the
main bus, and all transfers over them complete in one clock cycle. This means that the J-RISC

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 6 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

processors can execute code and transfer data within their internal space without using the main bus at
all. This greatly increases their throughput. Transfers on these local busses may be:

« slave transfers for another processor

« DMA transfers from the local DMA controller
« operand data transfers

« program fetches

Because the local bus is thirty-two bits, 10 bus transfers must always be performed in pairs in the order
low address then high address. The actual read occurs on the first of the pair, the actual write on the
second of the write pair; the data is just buffered in the other transfers.

All the J-RISC processor local memory is available to every processor in the system over the 10 bus, and
when another processor accesses the local space of a J-RISC processor this is considered a slave
transfer cycle. Heavy use of slave transfers may have a small effect on performance, but overall this
impact is not very significant.
The address ranges that are subject to these restraints are:

F02000 - FO7FFF GPU

F18000 - F19FFF RCPU

F1A000 - F1DFFF DSP
F1EO00 - F1FFFF RCPU

Memory Map

The system memory map is normally configured as follows:

FFFFFF Boot ROM
8 bit
F20000
FiFogp | RCPU cache SRAM - 4K Puck memory space
F1E000 RCPU local SRAM - 1K
F1D000 DSP local ROM - 2K
F1B00O DSP local SRAM - 8K
F1A000 DSP registers
F18000 RCPU registers
F10000 Puck and external 10 |
F06000 Blitter texture ROM - 8K Oberon memory space
F04000 Blitter texture SRAM - 8K
F03000 GPU local SRAM - 4K
F02000 Blitter & GPU registers
F00000 Video registers |
unused (extended Boot ROM)
8 bit
E00000
Cartridge ROM area
32 bit
up to 6 MB
800000
RAML1 area
400000
remainder of RAMO area
200000
2 MB DRAM - RAMO area
64 bit
000000

Areas marked in grey are not used in the current implementation.

Register Map

This is a complete list of every register in the Midsummer ASICs. All these registers are discussed in
greater detail further on in this document. They are all 16-bit registers unless otherwise marked.

F00000 MEMCON1 RW Memory Configuration Register One
F00002 MEMCON2 RW Memory Configuration Register Two
F00004 HC RW Horizontal Count

F00006 VC RW Vertical Count

F00008 LIMIT WO Object processor clip limit

F00008 LPH RO Horizontal Light-pen

FOO00A LPV RO Vertical Light-pen

F00010 OBO0-3 RO Object Code

F00020 OLPO-1 WO Object List Pointer

F00026 OBF WO Object Processor flag

F00028 | VMODE wo Video Mode

FO002A BORD1 WO Border Colour (Red & Green)
F0002C BORD2 WO Border Colour (Blue)

FO002E HP WO Horizontal Period

F00030 HBB WO Horizontal Blanking Begin

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 7

F00032 HBE WO Horizontal Blanking End F02260 BLIT_SRCZ2 WO Blitter source Z data 2
F00034 HS WO Horizontal Sync F02268 BLIT_PATD WO Blitter pattern data
F00036 HVS WO Horizontal Vertical Sync F02270 BLIT_IINC WO Blitter intensity increment
F00038 HDB1 WO Horizontal Display Begin 1 F02274 BLIT_ZINC WO Blitter Z increment
FOO03A [HDB2 WO Horizontal Display Begin 2 F02278 BLIT_STOP WO Blitter collision stop control
FO003C | HDE WO Horizontal Display End F0227C | BLIT_IO WO Blitter intensity register 0
FOO03E | VP WO Vertical Period F02280 BLIT_I1 WO Blitter intensity register 1
F00040 VBB WO Vertical Blanking Begin F02284 BLIT_I2 WO Blitter intensity register 2
F00042 VBE WO Vertical Blanking End F02288 BLIT_I3 WO Blitter intensity register 3
F00044 VS WO Vertical Sync F0228C | BLIT_Z0 WO Blitter Z register 0
F00046 VDB WO Vertical Display Begin F02290 BLIT_Z1 WO Blitter Z register 1
F00048 VDE WO Vertical Display End F02294 BLIT_Z2 WO Blitter Z register 2
FOO004A | VEB WO Vertical Equalization Begin F02298 BLIT_Z3 WO Blitter Z register 3
F0004C | VEE WO Vertical Equalization End F0229C | BLIT_FINNER WO Fractional part of the inner counter & extended command
FOO04E | VI WO Vertical Interrupt F022A0 | BLIT_IDELTA WO Inner counter initial value delta
F00050 PITO WO Programmable Interrupt Timer pre-scaler F022A4 | A1_XSD WO Al X step delta value
F00052 PIT1 WO Programmable Interrupt Timer divide F022A8 | A1_YSD WO Al Y step delta value
F00054 HEQ WO Horizontal equalization end F022AC | BLIT_ISTEP WO Intensity step value
F00056 TEST1 RW Diagnostic Test Register 1 F022B0 BLIT ISD WO Intensity step value delta
F00058 BG WO Background Colour F022B4 | BLIT_ZSTEP WO Z step value
FOOOEO INT1 RW CPU Interrupt Control Register F022B8 | BLIT_ZSD WO Z step value delta.
FOOOE2 INT2 WO CPU Interrupt resume register F022BC | BLIT_X0 WO Texture X address pointer 0
F00400 CLUT RW Color look-up table. 256 16-bit locations F022C0 | BLIT_X1 WO Texture X address pointer 1
F00800 LBUFA RW Line buffer A. 360 32-bit locations F022C4 | BLIT_X2 WO Texture X address pointer 2
F01000 LBUFB RW Line buffer B. 360 32-bit locations F022C8 | BLIT_X3 WO Texture X address pointer 3
F01800 LUBUFC RW Current line buffer (either A or B). 360 32-bit locations. F022CC [BLIT_YO WO Texture Y address pointer 0
F02000 GPU_REGS RW GPU registers, sixty-four 32 bit locations F022D0 [BLIT_Y1 WO Texture Y address pointer 1
F02100 GPU_FLAGS RW GPU flags F022D4 | BLIT_Y2 WO Texture Y address pointer 2
F02104 GPU_MTXC WO GPU matrix control F022D8 [BLIT_Y3 WO Texture Y address pointer 3
F02108 GPU_MTXA WO GPU matrix address F022DC [BLIT_XINC WO Texture X inner loop increment
F0210C | GPU_BIGEND WO GPU big / little endian control F022E0 BLIT_XSTEP WO Texture X outer loop step
F02110 GPU_PC RW GPU program counter F022E4 BLIT_XSD WO Texture X outer loop step delta
F02114 GPU_CTRL RW GPU operation control / status F022E8 BLIT_YINC WO Texture Y inner loop increment
F02118 GPU_HIDATA RW GPU bus interface high data FO022EC | BLIT_YSTEP WO Texture Y outer loop step
F0211C | GPU_REMAIN RO GPU division remainder F022F0 BLIT_YSD WO Texture Y outer loop step delta
F0211C | GPU_DIVCTRL WO GPU divide control register F022F4 BLIT_TBASE WO Texture base address
F02120 GPU_DMACNT WO GPU DMA transfer count F022F8 BLIT_IINCX WO Alternate intensity increment register
F02124 GPU_DMACTL WO GPU DMA control register FO022FC | A1_MASK WO Al window address mask.
F02124 GPU_DMASTAT RO GPU DMA status F02300 A2_CLIP WO A2 clipping window size
F02128 GPU_DMAEA WO GPU DMA external address F02304 Al X WO Alternate view of Al X pixel pointer and its fraction
F0212C | GPU_DMAIA WO GPU DMA internal address F02308 Al Y WO Alternate view of A1 Y pixel pointer and its fraction
F02200 Al BASE WO Blitter A1 base F0230C [A2 X WO Alternate view of A2 X pixel pointer
F02204 Al _FLAGS WO Blitter Al flags F02310 A2 Y WO Alternate view of A2 Y pixel pointer
F02208 Al _CLIP WO Blitter A1 window size F02314 Al _XSTEP WO Alternate view of Al X step pixel pointer and its fraction
F0220C | Al PIXEL RW Blitter A1 pointer F02318 Al _YSTEP WO Alternate view of A1 Y step pixel pointer and its fraction
F02210 Al STEP WO Blitter A1 step F0231C BLIT_COLOR WO Background color and data path control
F02214 Al _FSTEP WO Blitter Al step fraction F02320 BLIT_TXTD WO The texture data registers
F02218 Al _FPIXEL RW Blitter A1 pointer fraction F02400 BLIT_TCLUT WO Blitter texture CLUT - 16 words packed into 8 longs
F0221C | Al INC WO Blitter A1 pointer increment FO03000 GPU_RAM RW GPU local program and data RAM base, 1024 x 32 bits
F02220 Al FINC WO Blitter A1 pointer increment fraction F04000 TXT RAM RW Blitter texture RAM, 2048 x 32 bits
F02224 A2 BASE WO Blitter A2 base F06000 TXT ROM RW Blitter texture ROM, 2048 x 32 bits
F02228 A2_FLAGS WO Blitter A2 flags F10000 JPIT1 WO Timer 1 Pre-scaler
F0222C | A2 _MASK WO Blitter A2 mask F10002 JPIT2 wo Timer 1 Divider
F02230 A2_PIXEL RW Blitter A2 pointer F10004 JPIT3 WO Timer 2 Pre-scaler
F02234 A2_STEP WO Blitter A2 step F10006 JPIT4 WO Timer 2 Divider
F02238 BLIT_CMD WO Blitter command F10010 CLK1 (e} Processor clock divider
F0223C | BLIT_COUNT WO Blitter loop counters F10012 CLK2 WO Video clock divider
F02240 BLIT_SRCD e} Blitter source data F10014 CLK3 (e} Chroma clock divider
F02248 BLIT_DSTD WO Blitter destination data F10020 INT RW Interrupt Control Register
F02250 BLIT_DSTZ WO Blitter destination Z data F10030 ASIDATA RW Asynchronous Serial Data
F02258 BLIT_SRCZ1 WO Blitter source Z data 1 F10032 ASISTAT RO Asynchronous Serial Status
© 1992, 1993, 1994, 1995 ATARI Corp. A%ﬁw& CONFIDENTIAL 26 October, 2002

Page 8 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
g
F10032 ASICTRL WO Asynchronous Serial Control F1A120 | DSP_ACCUM RO DSP MAC operation result high bits
F10034 ASICLK RW Asynchronous Serial Interface Clock F1A120 | DSP_DMACNT WO DSP DMA transfer count
F10036 JPIT1 RO Timer 1 Pre-scaler F1A124 | DSP_DMACTL WO DSP DMA control register
F10038 JPIT2 RO Timer 1 Divider F1A124 | DSP_DMASTAT RO DSP DMA status
F1003A | JPIT3 RO Timer 2 Pre-scaler F1A128 DSP_DMAEA WO DSP DMA external address
F1003C | JPIT4 RO Timer 2 Divider F1A12C | DSP_DMAIA WO DSP DMA internal address
F10040 MEMCONP1 WO Puck Memory Configuration Register One F1A130 | PCM_LISTP WO DSP PCM list pointer
F10042 MEMCONP2 WO Puck Memory Configuration Register Two F1A134 | PCM_CTRL RW DSP PCM control/status
F10080 CD_CTRL WO CD DMA Control Register F1A148 | LTXD WO Left transmit data
F10080 CD_STAT RO CD DMA Status F1A14C | RTXD WO Right transmit data
g
F10084 CD _FLOW WO CD and IS data flow control F1A148 LRXD RO Left receive data
F10088 CD_ACTN WO CD DMA Action contro; F1A14C | RRXD RO Right receive data
F1008C | CD_PATH RW High word of pattern-recogniser long F1A150 [SCLK WO Serial Clock Frequency
F1008E | CD_PATL RW Low word of pattern-recogniser long F1A150 | SSTAT RO Serial status
F10090 CD_STARTH RW High word of CD DMA controller start address F1A154 | SMODE WO Serial Mode
F10092 CD_STARTL RW Low word of CD DMA controller start address F1B0O00 | DSP_RAM RW DSP data RAM, 8K bytes, byte addressable
F10094 CD_ENDH RW High word of CD DMA controller end address F1E000 | RCPU_DRAM RW RCPU data RAM, 1K bytes, byte addressable
F10096 CD_ENDL RW Low wordof CD DMA controller end address F1E800 RCPU_TRAM RW RCPU cache tag RAM, 256 bytes, long addressable
F10098 CD_MASK RW Mask applied to the DMA address F1F000 RCPU_PRAM RW RCPU cache data RAM, 4K bytes, long addressable
F1009C CD_CURH RO High word of CD DMA controller current transfer address
F1009E CD_CURL RO Low word of CD DMA controller current transfer address
F1009C CD_FAKEH WO High word of ‘fake’ input long
F1009E CD_FAKEL WO Low word of ‘fake’ input long . -
Fi2000 1 Sovt RW T Joystick register Video Generator and Object Processor
F14002 JOY2 RW Button register
F14800 GPIOO RW General purpose 10 decodes
F15000 GPIO1 RW
F16000 | GPIO2 RW Overview
F17000 GPIO3 RW
F17800 | GPIO4 RW) i)) i i
F17C00 | GPIO5 RW The video section has been designed to drive a PAL/NTSC TV. The display normally has a horizontal
F18000 RCPU REGS RW RCPU registers, sixty-four 32 bit locations resolution from 200 up to 720 pixels, and a vertical resolution of about 220-280 lines non-interlaced or
F18100 RCPU FLAGS RW RCPUTI 9 : 440-560 lines interlaced. However by adopting a flexible approach to the design, the chip can be used
ags_ with a range of display standards outside these values through VGA to Workstation.
F18104 RCPU MTXC WO RCPU matrix control
F18108 RCPU MTXA WO RCPU matrix address Three colour resolutions are supported, 24 bit RGB, 16 bit RGB, and our own standard 16 bit CRY (Cyan,
F1810C | RCPU BIGEND WO RCPU big / litte endian control Red, Intensity). The 24 bit mode is useful for applications requiring true colour. The 16 bit modes are
F18110 RCPU PG RW RCPU g r designed for animation. They consume less memory, and fit better into 64 bit phrases. The CRY mode is
progra_m counter simple to shade and both 16 bit modes are more or less indistinguishable from 24 bit mode. The pixels
F18114 RCPU CTRL RW RCPU operation control / status are packed thus (in a big-endian system):
F18118 RCPU HIDATA RW RCPU bus interface high data 16-Bit CRY Pixel Organisation
F1811C RCPU_REMAIN RO RCPU division remainder
F1811C | RCPU_DIVCTRL WO RCPU divide control register |R3|R2 | R1 | Rolc3 | c2 | Cllcgl Y7| Y6| Y5| Y4| Y3| Y2| Yll YQl
F18120 RCPU_DMACT WO RCPU DMA transfer count 15 0
F18124 RCPU_DMACTL WO RCPU DMA control register
F18128 RCPU DMAEA WO RCPU DMA external address 16-Bit RGB Pixel Organisation
F1812C RCPU_DMAIA WO RCPU DMA internal address
F18130 | RCPU CACTRL RW | RCPU cache control register |R4|rs|R2[R1[Ro| B4[B3| B2| B1| BO[G5 [34| B3| 5251 | 30
F18134 RCPU_CAILO WO RCPU cache ignore range lower limit 15 0
F18138 RCPU_CAIHI WO RCPU cache ignore range upper limit 24-Bit RGB Pixel Organisation
F1813C | RCPU_UART_C RW RCPU UART control register
F18140 | RCPU_UART D RW__| RCPU UART data register [67]c6|e5]ca]c3|c2|c1]c0|R7|R6|R5|Ra|R3[R2[R1]RO| oW WOrd
F18144 RCPU_SBASE RW RCPU base pointer for rolling stack cache
F1A000 | DSP_REGS RW DSP registers, sixty-four 32 bit locations 31 16
F1A100 | DSP_FLAGS RW | DSP flags [T][] | [s7]B6]B5|B4]B3[B2| B1[BO| high Word
F1A104 | DSP_MTXC WO DSP matrix control 15 0
F1A108 DSP_MTXA WO DSP matrix address i . i . .
FIAL0C | DSP BIGEND WO DSP big / little endian control The video generator decouples the pixel frequency from the system clock by using a line buffer. This
F1AL10 DSP PC RW DSP program counter means that the system clock does not have to be related to the colour carrier frequency and is unaffected
FiAlla | DSP CTRL RW DSP progral 7 by gen-locking. There are actually two line buffers; one is displayed, while the other is prepared by the
operatlop contrg status Object Processor. Each line buffer is a 360 x 32 bit RAM which is cycled at the system clock rate. The line
F1A118 | DSP_MMASK RW__| DSP modulo instruction mask buffer contains physical pixels, which have been expanded by the CLUT where necessary O these may
F1A11C | DSP_REMAIN RO DSP division remainder be either 16 bit RGB, 16 bit CRY pixels or 24 bit RGB pixels. The line buffers may be swapped over at the
F1A11C | DSP_DIVCTRL WO DSP divide control register

start and in the middle of display lines.

26 October, 2002

CONFIDENTIAL

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 9

The 16 bit CRY pixels at the output of the line buffer are converted to 24 bit RGB pixels using a
combination of look-up tables and small multipliers.

The video timing is completely programmable in units of the pixel clock. The pixel clock can be up to the
system clock rate, although there is provision for higher rates with an external multiplexer. For TV
applications the pixel clock will be in the range 12 to 15 MHz. The pixel clock will be synthesised from the
chroma carrier or from an external video source using a device like the MC1378. Eight bits per pixel at up
to four times the video clock rate can be supported by using an external multiplexer, colour-look-up and
DAC.

The video generator uses an Object Processor, this combines the advantages of frame store and sprite
based architectures. Oberon's Object Processor is simple yet sophisticated. It has scaled and unscaled
bit-map objects, branch objects for controlling its control flow, and interrupt objects. It can interrupt the
graphics processor to perform more complex operations on its behalf. The graphics processor supports
rotation, branches, palette loads, etc.

The Object Processor can write into the line buffer at up to two pixels per clock cycle. The source data
can be 1,2,4,8,16 or 24 bits per pixel. Except for 24 bits, objects of different colour resolutions can be
mixed. The low resolution objects, one to eight bits, use a palette to obtain a 16 bit physical colour.

A sophistication in the Object Processor is that it can modify the existing contents of the line buffer with
another image. This could be used to produce shadows, mist or smoke, coloured glass or say the effect
of a room illuminated by flash lamp.

The Object Processor can also ignore data that is stored alongside pixel data. If, for instance, a Z buffer is
needed then this can be situated next to the pixels. This helps because DRAM RAS pre-charges are
needed less frequently.

Object Processor Performance

Each object is described by an object header which is two phrases for an unscaled object and three
phrases for a scaled object. When an image has been processed the modified header is written back to
memory.

The Object Processor fetches one phrase (64 bits) of video data at a time. This phrase is expanded into
pixels (and written into the line buffer) while the next phrase is fetched.

Image data consists of a whole number of phrases. The image data may need to be padded with
transparent pixels (colour zero in 1, 2, 4, 8 & 16 bit modes).

The Object Processor writes into the line buffer at one write per system clock cycle. In 24 bits-per-pixel
mode and for scaled objects one pixel is written per cycle. For unscaled objects with 16 or fewer bits per
pixel two pixels are written per cycle. Most objects will therefore be expanded at twice the system clock
rate.

If the read-modify-write flag is set in the object header the object data is added to the previous contents of
the line buffer. In this case the data rate into the line buffer is halved.

This peak rate may be reduced if the memory bandwidth is not high enough. However if 64 bit wide
DRAM is installed then these data rates will be sustained for all modes.

When accessing successive locations in 64 bit wide DRAM, the memory cycle time is two clock cycles.
These are page mode cycles. When the DRAM row address must change there is an overhead of
between three and seven clock cycles (depending on DRAM speed). These RAS cycles will occur
infrequently during object data fetches but will typically occur during the first data read after reading the
object header (because the header and image data will not normally be near each other in memory). RAS
cycles will also occur after refresh cycles or if a bus master with a higher priority steals some memory
cycles in an area of memory with a different row address. Refresh cycles will normally be postponed until
object processing has completed.

Memory controller

Oberon's memory controller is very fast and flexible. It hides the memory width, speed and type from the
other parts of the system.

Memory is grouped into banks that may be of different widths, speeds and types (although both ROM
banks have the same width and speed). Each bank is enabled by a chip select. In the case of DRAM
there are two chip selects RAS & CAS. Memory widths can be 8,16,32 or 64 bits wide but the memory
controller makes it all look 64 bits wide.

There are eight write strobes - one for each group of eight bits. There are three output enables
corresponding to d[0-15],d[16-31] and d[32-63]. Three memory types are supported: DRAM, SRAM and
ROM.

ROM or EPROM is used for bootstrap and for cartridges. The ROM speed is programmable. The memory
controller allows the system to view ROM as 64 bits wide. Pull-up and pull-down resistors determine the
ROM width during reset.

DRAM is the principal memory type, as it is cheap and fast when used in fast page mode. In fast page
mode the DRAM cycles at two clock cycles per transfer. The row time access is programmable. The
column access time is not programmable and can only be adjusted by changing the system clock (a page
mode cycle takes two clock cycles). The memory controller decides on a cycle by cycle basis whether the
next cycle can be a fast page mode cycle. Data and algorithms should be organised to minimise the
number of page changes.

There are four memory banks; two of ROM and two of DRAM.

Microprocessor Interface

JAGUAR has been designed to work with any 16 or 32 bit microprocessor with (up to) 24 address lines.
The interface is based on the 68000 but most microprocessors can be attached by using a PAL to
synthesize those control signals that differ. All peripherals are memory mapped; there is no separate IO
space.

The width of the microprocessor is determined during reset by a pull-up / pull-down resistor. Variation in
the address of the cold boot code or start-up vector is accommodated by making the bootstrap ROM
appear everywhere until the memory configuration is set up by the microprocessor.

The microprocessor interface is generally asynchronous so the clock speeds of the microprocessor and
co-processors may be independent. Puck uses the same microprocessor interface.

The CPU normally has the lowest bus priority but under interrupts its priority is increased.
The following list gives the priorities of all bus masters.
Highest priority

Refresh

DSP at DMA priority
CD DMA transfers
RCPU at DMA priority
GPU at DMA priority
Blitter at high priority
Object Processor

DSP at normal priority
RCPU at high priority
10. CPU under interrupt
11. GPU at normal priority
12. Blitter at normal priority
13. RCPU at normal priority
14. CPU

Lowest priority

©COoNOO~WNE

Memory Map

Jaguar's memory map depends on how it is being used.

Following reset the following 2 Mbyte window, corresponding to the ROMO area, is repeated throughout
the 16 Mbyte address space until memory is configured by the microprocessor by writing to MEMCONL1.
After configuration, this map corresponds to the area defined as ROMO on the maps below.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 10 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
1FFFFF Boot strap ROM Bits 5,6 DRAMSPEED Specifies the DRAM Speed. The page mode cycle time is always
two clock cycles. These bits determine RAS related timing as
120000 follows (the times are clock cycles):
Bits 5,6 Precharge RAS to CAS | Refresh
DSP and RCPU 0 4 3 5
118000 1 4 3 4
Joysticks and 2 3 2 4
114000 GPl -5 3 2 1 3
Puck registers Bit 7 FASTROM Sets the ROM cycle time to two clock cycles. This is for test
purposes only.
110000 Bits 8-10 unused Set to zero.
I nternal Bits 11,12 IOSPEED Specifies the speed of external peripherals. The number of cycles
100000 Regi sters here is the overall cycle time, the control strobes are active for two
Boot strap ROM cycles less than this.
0 18clock cycles
1 10 clock cycles
000000 2 4 clock cycles
When the memory configuration is set one of two memory maps is selected depending on bit ROMHI of 3 6 clock cycles
the memory configuration register. Bit 13 unused Set to zero.
EFEFEE EFEFEE Bit 14 CPU32 Indicates that the microprocessor is 32 bits.
OV DRAl D. Bit 15 unused Set to zero.
Boot st rap ROM 2 Mytes Dynani ¢ RAM 4 Moytes
and registers
E00000 ©00000 All the ROMSPEED bits are set to zero on reset. ROMHI, ROMWIDTH and CPU32 are determined by
ROML . DRAN”‘_ external pull-up / pull-down resistors. All the other bits are undefined. ROMO repeats every 2 Mbytes until
Cartridge ROM 6 Mytes Dynanmi ¢ RAM 4 Moytes this register is written to.
800000 800000
DRAML ROML MEMCON2 Memory Configuration Register Two F00002 RW
Dynam ¢ RAM 4 Moyt es Cartridge ROM 6 Mytes
400000 200000 Bits 0,1 COLSO0 Specifies number of columns in DRAMO
DRAMD ROVD 0 256
Dynani ¢ RAM 4 Moytes Bootstrap ROM | 2 Moytes 1 512
and registers 21024
000000 000000 3 2048
ROWHI =1 ROWHI =0 Bits 2,3 DWIDTHO Specifies the width of DRAMO
ROMO is the bootstrap ROM but internal (on chip) memory and peripherals occupy 128 KBytes of this 2 ieblt;ists
space, as shown above. ROML1 is the cartridge ROM. DRAMO and DRAM1 are the two banks of DRAM. 2 32 bits
A 68000 system will naturally operate with RAM at 0, so the ROMHI map is assumed throughout this 3 64 bits
document. If the system is operated with ROMHI = 0 then the first digit of all internal addresses should be Bits 4,5 COLS1 Specifies number of columns in DRAM1
1 rather than F. This is not recommended. 0 256
1 512
Internal Memory Map 2 1024
3 2048
Internal Memory is mostly 16 bits wide to allow operation with 16 bit microprocessors. Bits 6,7 DWIDTH1 Specifies the width of DRAM1
32 bit write cycles are allowed to some areas of internal memory notably the line buffer and the graphics 0 8 bit_s
processor memory. The line buffers support 32 bit writes primarily in order to accelerate Blitter writes to 1 16 b!ts
the line buffer. The graphics processor supports 32 bit writes to accelerate program and data loads. g 2421 E!ts
its
: . : Bits 8-11 REFRATE Specifies the refresh rate. DRAM rows are refreshed at a
MEMCON1 Memory Configuration Register One FO0000 RW frequency of CLK / (64 x (REFRATE+1)). Many DRAM chips
Bit 0 ROMHI When set the two ROM decodes address the top 8M within the re%wrfe Z_ref:esh freql_Jencl); ngG'le;HrE Refresh cfyclehs_oc(;:_ur Sll tge
16M window. When clear the ROM decodes address the bottom - en 0. .0 JeC pr_ocessn_ng. - IS zero relresn Is _|sa ed.
8M. This document assumes throughout that ROMHI is set when Bit 12 BIGEND Specn‘lgs that big-endian addressmg §hou|d be used. This
discussing register addresses. determines the address of a bytg Wlthlln a phrase and allows
Bits 1.2 ROMWIDTH Specifies the width of ROM: Jaguar to be usgd cgmfortaply with Big-endian (Motorola)
0 8 bits processors or with Little-endian (Intel) processors.
1 16 bits Bit 13 HILO Specifies that image data should be displayed from high order bits
2 32 bits to low order.
3 64 bits All the above bits are undefined on reset except BIGEND which is determined by external pull-up / pull-
Bits 3,4 ROMSPEED Specifies the ROM cycle time: down resistors.
0 10 clock cycles
1 8clock cycles
2 6 clock cycles
3 5 clock cycles

26 October, 2002

CONFIDENTIAL

A

ATARI

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 11

HC Horizontal Count F00004 RW

This register comprises of a ten bit counter that counts from zero up to the value in the horizontal period
register twice per video line. An eleventh bit determines which half of the display is being generated. The
counter is incremented by the pixel clock. The vertical counter is incremented every half line in order to
support interlaced displays. This register is only for chip test purposes.

VvC Vertical Count FO00006 RW

This register comprises of an eleven bit counter that counts from zero up to the value in the vertical period
register once per field. A twelfth bit determines which field (odd or even) is being generated. The counter
is incremented every half line. This register can be read to do beam synchronous operations. It is only
written to for chip test purposes.

LIMIT Object processor clip limit FO00008 WO

This register defines the line buffer pixel position at which line buffer writes are clipped, and the object
processor will move on to the next object. The line buffer holds 720 16 bit pixels. When an object is
copied into the line buffer for display any data which would extend beyond this limit is discarded and the
object processor moves onto the next object. Many games display far fewer than 720 pixels horizontally
so this “clipping" process will commence much sooner and improve efficiency if this register is set up
appropriately.

This register is set to 720 after reset.

LPH Horizontal Light-pen FO0008 RO

This read only eleven bit register gives the horizontal position in pixels of the light-pen.

LPV Vertical Light-pen FOOO00A RO

The low eleven bits of this register gives the vertical position of the light-pen in half lines.
OB[0-3] Object Code

These four registers allow the graphics processor to read the current object. This allows the graphics
processor object to pass parameters to the GPU interrupt service routine.

F00010-16 RO

OLP1(OLP) Object List Pointer Low Word F00020 WO
OLP2 Object List Pointer High Word F00022 WO

This pair of 16 bit registers point to the start of the object list. All objects must be on a phrase boundary so
the bottom three bits are always zero. When one object links to another, bits 3 to 21 of this address are
replaced by the LINK data in the object.

You can write to this register pair with a single long transfer, but note that the word ordering is little-
endian, so you will have to swap the words of the data before doing the long write.

OBF Object Processor flag F00026 WO

Bit zero of this register can be tested by the Object Processor branch instruction. If set the branch is
taken, if clear execution continues with the next object. This flag is intended as a mechanism for letting
the graphics processor control the Object Processor program flow. A write (of anything) to this register
restarts the Object Processor after a Graphics Processor interrupt object.

VMODE Video Mode F00028 WO
Bit Name Description
0 VIDEN When set enables time-base generator

1-2 MODE Determines how the line buffer contents are translated into physical

pixels.

0 16 bit CRY. Each 32 bit entry in the line buffer is treated as two
16 bit CRY pixels on successive clock cycles. Each is
converted into eight bits of red, green & blue using a
combination of lookup tables and multipliers.

1 24 bit RGB. Each 32 bit entry in the line buffer is treated as one
physical pixel with eight bits of red, eight bits of blue, eight bits
of green and eight bits unused.

2 16 bit direct. Each 32 bit entry in the line buffer is divided into
two 16 bit words which are output directly onto the red and
green outputs on alternate phases of the video clock. This
mode is for applications requiring a dot clock in excess of 40
MHz. It is assumed that further multiplexing and colour lookup
will occur outside the chip. In this mode blanking and video
active are output on the two least significant bits of blue.

3 16 bit RGB. Each 32 bit entry in the line buffer is treated as two
16 bit RGB pixels. Bits [0-5] are green, bits [6-10] are blue and
bits [11-15] are red.

3 GENLOCK When set this bit enables digital genlocking. This means that
external syncs will reset the internal time-base generators. On its
own this mechanism does not give satisfactory genlocking because
there is a jitter of up to one pixel. However this mechanism is used
to quickly lock onto a new video source. An external Phase Locked

Loop is required for true genlocking.

4 INCEN Enables encrustation. When set the least significant bit of the CRY
intensity is used to switch between local and external video sources
using an external video multiplexer. This allows the video source to

be switched on a pixel by pixel basis.

(62}

BINC Selects the local border colour if encrustation is enabled.

[<2]

CSYNC Enables composite sync on the vertical sync output.

7 BGEN Clears the line buffer to the colour in the background register after
displaying the contents. This only has effect in CRY and RGB16
modes.

Enables variable colour resolution mode. When this bit is set the
least significant bit of each word in the line buffer is used to
determine the colour coding scheme of the other 15 bits. If the bit is
clear the bits the word is treated as a CRY pixel. If the bit is set then
bits [1-5] are green, bits [6-10] are blue and bits [11-15] are red. This
mechanism allows JAGUAR to support an RGB window against a
CRY background for instance.

8 VARMOD

9-11 PWIDTH This field determines the width of pixels in video clock cycles. The
width is one more than the value in this field.

The video time base generator is programmed in cycles of the video
clock and not the pixel clock produced by this divider.

The display width should be set to be an integer number of pixels,

i.e. an integer multiple of the pixel width programmed here.

12 DBL_SCAN In order to overlay a TV/games quality image over a VGA display. It
is desirable to display the line buffer twice. This makes each pixel
twice as high without the overhead of scaling and it gives the object
processor two lines in which to prepare the next line.

This mode is enabled by setting the DBL_SCAN bit. It should be
noted that the object processor is invoked every other line. This
means that the YPOS field in bit mapped objects must be
incremented by two to move an object down by one pixel. Also
because the object processor skips alternate lines branch objects
should be an even number of lines from the start line.

13-15 unused Write zero.

BORD1 Border Colour (Red & Green) FO002A WO
BORD2 Border Colour (Blue) F0002C WO

These registers determine the physical border colour. There are eight bits per primary colour. Red is the
less significant byte of BORD1. This colour is displayed between the active portions of the screen and

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 12 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

blanking. It is not necessary to display a border. The border area is defined by the video time-base
registers.

FOO02E WO

This ten bit register determines the period of half a display line in video clock cycles. The period is one
clock cycle longer than the value written into this register.

HP Horizontal Period

HBB Horizontal Blanking Begin F00030 WO

This eleven bit register determines the start position of horizontal blanking. The most significant bit is
usually set because blanking starts in the second half of the line.

HBE Horizontal Blanking End F00032 WO

This eleven bit register determines the end position of horizontal blanking. The most significant bit is
usually clear because blanking ends in the first half of the line.

HS Horizontal Sync FO00034 WO

This eleven bit register determines the width of the horizontal sync and equalization pulses. The pulses
start when the horizontal count equals the value in the register. The pulses end when the horizontal count
equals the horizontal period. The most significant bit is usually set because horizontal sync happens at
the end of the line. The most significant bit is ignored in the generation of equalization pulses which are
the same width as horizontal sync but which appear twice per line (for 10 half lines during field blanking).

HVS Horizontal Vertical Sync FO0036 WO

This ten bit register determines the end position of the vertical sync pulses. Vertical Sync consists of long
sync pulses for several half lines. These pulses are generated twice per line. Vertical sync starts at the
same time as the horizontal sync or equalization pulses but end when the least significant ten bits of the
horizontal count match the HVS register.

HDB1 Horizontal Display Begin 1 F00038 WO
HDB2 Horizontal Display Begin 2 FOO03A WO

These eleven bit registers control where on the display line the Object Processor starts. When the
horizontal count matches either of the above registers the Object Processor starts execution at the
address in OLP, the line buffers swap over and pixels are shifted out of the line buffer. The Object
Processor can run twice per line in order to support display modes where the amount of data on a display
line is greater than can be contained in one line buffer. The line buffers are each 360 words x 32 bits. If
the display mode was 720 x 24 bits per pixel then line buffer A might be displayed at the start of the line
while buffer B was being written. Then during the second half of the display line buffer B would be
displayed while line buffer A was prepared for the next line. In this case HDB1 would contain a value
corresponding to the left hand edge of the display and HDB2 would contain a value corresponding to the
middle of the display. If the Object Processor needs to run only once per line then either the registers take
the same value or one register is given a value greater than the line length.

FO003C WO
This eleven bit register specifies when the display ends. Either border colour or black (if HBB < HDE) is
displayed after the horizontal count matches this register.

The relative positions of some of the above signals and the registers which define them are shown on the
following diagram.

HDE Horizontal Display End

& —— — display line _—

/' hsync hs hp hs hp
/eq hs—l_l heq hs I_I heq
/vsync —I hs hvs ,_I hs

hbl ank hbe hbb

vactive hdb1/ hdb2 hde

FOOO3E WO

This eleven bit register determines the number of half lines per field. The number is one more than the
value written into this register. If the number of half lines is odd then the display is interlaced.

VP Vertical Period

VBB Vertical Blanking Begin F00040 WO

This eleven bit register specifies the half line on which vertical blanking begins.

VBE Vertical Blanking End F00042 WO

This eleven bit register specifies the half line on which vertical blanking ends.

VS Vertical Sync F00044 WO

This eleven bit register specifies the half line on which vertical sync begins. Vertical sync pulses are
generated from this line to the line specified by the vertical period.

VDB Vertical Display Begin F00046 WO
This eleven bit register specifies the half line on which object processing begins. Object processing

restarts on every line until the half line specified by the VDE register. The border colour (or black) is
displayed outside these active lines.

VDE Vertical Display End F00048 WO

This eleven bit register specifies the half line at which object processing ends.

VEB Vertical Equalization Begin FOO04A WO

This eleven bit register specifies the half line on which equalization pulses start.

VEE Vertical Equalization End F0004C WO

This eleven bit register specifies the half line on which equalization pulses end.

FOO0O4E WO

This eleven bit register specifies a half line on which the VI interrupt is generated. This number must be
odd for non-interlaced set-ups.

\i Vertical Interrupt

PIT[0-1] F00050-52 WO

These two 16 bit registers control the frequency of interrupts to the CPU and to the GPU. PIT[0] & PIT[1]
operate as a pair controlling the interrupts.
The system clock is divided by (one plus the value in the first register). If the first register contains zero

the timer is disabled. The resulting frequency is divided by (one plus the value in the second register) and
the output of this divider generates the interrupt.

Programmable Interrupt Timer

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 13

HEQ Horizontal equalization end F00054 WO
This ten bit register determines the end position of the equalization pulses. Equalization consists of short

sync pulses for several half lines on either side of vertical sync. These pulses are generated twice per
line.

TEST1 Diagnostic Test Register 1 F00056 RwW

This register is for chip test purposes only and must never be written to in normal operation. The boot-
strap code may alter it to initialise the system for an application.

@

it Description

enables the vertical and horizontal counters

starts object processing

disables the CRY ROMs for testing the multipliers

latches the vertical count

enables the NAND tree output onto XINTL

enable the Jaguar One Jerry interface

delay the DRAM write strobes by one half clock cycle

sets the timer and prescaler to run off VCLK instead of PCLK
enables interrupt vectors based on 40h + bits 0-4 of INT1
enables the current bus owner onto the bottom 4 bits of blue, for
debug only, as follows:

CPU

low priority Puck

blitter

GPU

CPU under interrupt

normal priority Puck

object processor

high priority blitter

high priority GPU

. high priority Puck

10. refresh

Note that this is the Oberon view, further arbitration is done in Puck.

BG Background Colour F00058 WO

This register specifies the CRY colour to which the line buffer is cleared.

[<e] oo} EN] [} [&;] EN [4V] [N P [@)

©CONOUTAWNEO

INT1 68000 Interrupt Control Register FOOOEO RW

This register enables, identifies and acknowledges interrupts from the five different 68000 interrupt
sources. The interrupts sources are as follows:

routine. After the write to this port the Blitter or GPU may then restart, and no further instructions will then
be executed until either the next interrupt occurs, or the GPU or Blitter operation completes.

CLUT Colour Look-Up Table

The colour look-up table translates an eight bit colour index into a 16 bit physical colour (CRY or 16 bit
RGB). The eight bit index comes from the object data, which may be 1,2,4 or 8 bits. In order to achieve a
high throughput there are two tables allowing two pixels at a time to be written into the line buffer. There
are 256 16 bit entries in each table. Locations in the range FO0400-5FE read from table A. Addresses in
the range FO0600-7FE read from table B. Writing to either address range writes to both tables.

FO00400-7FE RW

LBUF Line Buffer FO0800-0D9E RW

F01000-159E
FO01800-1D9E

There are two line buffers each of which consists of a 360 x 32 bit RAM. Each 32 bit long-word can be
read/written as two 16 bit words. In 16 bit CRY mode each word is a CRY pixel; the less significant byte is
the intensity. The word with the lowest address corresponds to the left-most pixel. In 24 bit RGB mode
each 32 bit long-word is a pixel. The less significant byte of the word at the lower address is the red value.
The more significant byte is the green value and the less significant byte of the word at the high address
is the blue value. The fourth byte is unused.

The first address range addresses line buffer A. The second addresses line buffer B. The third addresses
the line buffer currently selected for writing. The first two address ranges are for test purposes the third is
for the graphics processor to assist the Object Processor in preparing the line buffer.

By adding 8000h to the above address ranges 32 bit writes can be made to the line buffer. This is mainly
to accelerate the Blitter.

Object definitions

There are six basic object types

Bit Mapped Object

This object displays an unscaled bit mapped object. The object must be on a 16 byte boundary in 64 bit
RAM.

First Phrase

Bits Field Description

0-2 TYPE Bit mapped object is type zero

3-13 YPOS This field gives the value in the vertical counter (in half lines) for
the first (top) line of the object. The vertical counter is latched
when the Object Processor starts so it has the same value
across the whole line. If the display is interlaced the number is
even for even lines and odd for odd lines. If the display is non-
interlaced the number is always even. The object will be active
while the vertical counter >= YPOS and HEIGHT > 0.

0 Video This interrupt is generated by the video time-base, on a line selected
by the VI register.

1 GPU This interrupt is generated by the graphics processor writing to an
internal register.

2 Object This interrupt is generated by stop objects.

3 Timer This interrupt is generated by the programmable timer (PIT) in
OBERON.

4 Puck This interrupt is generated by an input to Oberon and is intended for
use by Puck. This is an active high edge-triggered interrupt - the first
interrupt will occur on the first rising edge after it has been enabled.

14-23 HEIGHT This field gives the number of data lines in the object. As each
line is displayed the height is reduced by one for non-interlaced
displays or by two for interlaced displays. (The height becomes
zero if this would result in a negative value.) The new value is

written back to the object.

Bits 0 to 4 enable the individual interrupt sources, i.e. if bit 1 is set the graphics processor interrupt is
enabled. When read bits 0 to 4 indicate which interrupts are pending, i.e. if bit 3 is set there is an timer
interrupt pending. Bits 8 to 12 clear pending interrupts from the corresponding interrupt source.

Note that INT2 must always be written to at the end of a CPU interrupt service routine.

INT2 CPU Interrupt Resume Register FO00E2 WO

When an interrupt is applied to the CPU the bus priorities of the graphics processor and Blitter are
reduced so that the CPU can service real time interrupts promptly. The bus priorities are restored by
writing any value to this register. This should therefore always be done at the end of an interrupt service

24-42 LINK This defines the address of the next object. These nineteen bits
replace bits 3 to 21 in the register OLP. This allows an object to

link to another object within the same 4 Mbytes.

43-63 DATA This defines where the pixel data can be found. Like LINK this is
a phrase address. These twenty-one bits define bits 3 to 23 of the
data address. This allows object data to be positioned anywhere
in memory. After a line is displayed the new data address is

written back to the object.

Second Phrase

[Bits [Field

| Description |

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

map object uses the second higher precision form when this bit is
set, as shown below.

Page 14 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6

0-11 XPOS This defines the X position of the first pixel to be plotted. This 12 58 DBL_RMW When this bit is set, the strength of RMW objects is doubled. This
bit field defines start positions in the range -2048 to +2047. allows a single RMW object to fade all the way to black.

Address 0 refers to the left-most pixel in the line buffer. 59-63 unused Write zero
12-14 DEPTH This defines the number of bits per pixel as follows:
0 1 bit/pixel Scaled Bit Mapped Object
1 2 bits/pixel) . .
2 4 bits/pixel This gb]ect dls_plays a scal_ed bit mapp_ed object. The object must be on a_32 byte boundary in 64 _blt RAM.
38 bitsipixel The first 128 bits are identical to the bit mapped ob_Ject except that TYPE is one. An extra p_hr_ase is
—— appended to the object. If the HI_SCALE bit is set in the second phrase of the object description, then the
4 16 b!ts/p!xel object scales take a secondary form shown below. This mode also allows the horizontal remainder to be
5 24 bits/pixel initialised.

15-17 PITCH This value defines how much data, embedded in the image data, - - —
must be skipped. For instance two screens and their common Z Bits Field Description
buffer could be arranged in memory in successive phrases (in 0-7 HSCALE This eight bit field contains a three bit integer part and a five bit
order that access to the Z buffer does not cause a page fault). fractional part. The number determines how many pixels are
The value 8 * PITCH is added to the data address when a new written into the line buffer for each source pixel.
phrase must be fetched. A pitch value of one is used when the 8-15 VSCALE This eight bit field contains a three bit integer part and a five bit
pixel data is contiguous - a value of zero will cause the same fractional part. The number determines how many display lines
phrase to be repeated. are drawn for each source line. This value equals HSCALE for an

18-27 | DWIDTH This is the data width in phrases. i.e. Data for the next line of object to maintain its aspect ratio.
pixels can be found at 8 * (DATA + DWIDTH) 16-23 REMAINDER This eight bit field contains a three bit integer part and a five bit

28-37 IWIDTH This is the image width in phrases (must be non zero), and may fractional part. The number determines how many display lines
be used for clipping. are left to be drawn from the current source line. After each

38-44 | INDEX For images with 1 to 4 bits/pixel the top 7 to 4 bits of the index display line is drawn this value is decremented by one. Ifit
provide the most significant bits of the palette address. becomes negative then VSCALE is added to the remainder until

5 REFLECT Flag to draw object from right to left. it becomes positive. HEIGHT is decremented every time

46 RMW Flag to add object to data in line buffer. The values are then VS.CALE is added to Fhe remainder. The new REMAINDER is
signed offsets for intensity and the two colour vectors. written bac_k to the object.

47 TRANS Flag to make logical colour zero and reserved physical colours 2463 Unused write zeroes.

28 RELEASE EIF’E:]SSE:?)TEES the Object Processor to release the bus between This is the aIt_ernative form of the thirq phrase usgd when the HI_SCALE bit is set. This higher precision,
data fetches. This should typically be set for low colour resolution form qf the third phrasg |s'usedlto define the sca}lmg factors. The format abovg uses an g|ght blt'number
objects because there is time for another bus master to use the to dgﬂne the scale. This eight b!t ngmber comprises a three bit mteger and a five b|t'fract|on. Th'IS allqws
bus between data fetches. For high colour resolution objects the ;cal|ng between'1/32 gind 7.' This h!gh precision format uses a 16 bit number comprlse?d of an elght bit
bus should be held by the Object Processor because there is integer anq an el_ght_ bit fraction. This allows scaling between 1/256 and 256 but more importantly it allows
very little time between data fetches and other bus masters would more precise definition of scale.
probably cause DRAM page faults thereby slowing the system. This form of the third phrase also carries a horizontal remainder. This determines the width of the first
External bus masters, the refresh mechanism and graphics pixel to be displayed. This can be used to get more control over scaling e.g. to ensure symmetry in scaled
processor DMA mechanism all have higher bus priorities and are objects.
unaffected by this bit. The bits in the third phrase of higher precision scaled objects are as follows:

49-54 FIRSTPIX This field identifies the first pixel to be displayed. This can be - - —
used to clip an image. The significance of the bits depends on Bits Field Description i ____
the colour resolution of the object and whether the object is 0-15 HSCALE This sixteen bit field contains an eight bit integer part and an
scaled. The least significant bit is only significant for scaled eight bit fractional part. The number determines how many pixels
objects where the pixels are written into the line buffer one at a are written into the line buffer for each source pixel.
time. The remaining bits define the first pair of pixels to be 16-31 VSCALE This sixteen bit field contains an eight bit integer part and an
displayed. In 1 bit per pixel mode all five bits are significant, In 2 eight bit fractional part. The number determines how many
bits per pixel mode only the top four bits are significant. Writing display lines are drawn for each source line. This value equals
zeroes to this field displays the whole phrase. HSCALE for an object to maintain its aspect ratio.

55 FORCE_LSB The mixed CRY-RGB display mode was principally created to 32-47 VREMAINDER This sixteen bit field contains an eight bit integer part and an
mix real-time RGB data from a camera say, with computer eight bit fractional part. The number determines how many
generated CRY images without the need for colour space display lines are left to be drawn from the current source line.
conversion. However the blitter shading logic does not have logic After each display line is drawn this value is decremented by one.
to protect the least significant bit of each pixel. If it becomes negative then VSCALE is added to the remainder
When this bit is set, the object processor will set or clear the LSB until it becomes positive. HEIGHT is decremented every time
of every pixel within an object. If bit 55 of the first phrase of a bit VSCALE is added to the remainder. The new VREMAINDER is
mapped object is set then the LSB of each pixel is taken from bit written back to the object.

38 of this phrase (the least significant bit of the index). In mixed 48-63 HREMAINDER This determines the width of the first pixel to be displayed, in a
mode the LSB should be set to display the pixel as RGB or clear similar manner to VREMAINDER, so that the first pixel can be
to display the pixel as CRY. narrower than the HSCALE.

56 MIXER This bit enables the object data mixer. See the discussion below
under the Mixer Object. . .

57 HI_SCALE Enables high precision scaling. The third phrase of the scaled bit Graphics Processor Object

This object interrupts the graphics processor, which may act on behalf of the Object Processor. The
Object Processor resumes when the graphics processor writes to the object flag register.

26 October, 2002

CONFIDENTIAL

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS

Page 15

Bits Field Description

0-2 TYPE GPU object is type two

This is the mixer color, which is mixed with the object data

16-31 MIX_COLOR
according to the fraction, when the mixer enable bit is set.

3-63 DATA These bits may be used by the GPU interrupt service routine.
They are memory mapped as the object code registers OBO-3,
so the GPU can use them as data or as a pointer to additional

parameters.

Execution continues with the object in the next phrase. The GPU may set or clear the (memory mapped)
Object Processor flag and this can be used to redirect the Object Processor using the following object.

Branch Object

This object directs object processing either to the LINK address or to the object in the following phrase.

Bits Field Description

0-2 TYPE Branch object is type three

3-13 YPOS This value may be used to determine whether the LINK address

is used.

14-16 CcC These bits specify what condition is used to determine whether to
branch as follows:

Branch if YPOS == VC or YPOS == 7FF

Branch if YPOS > VC

Branch if YPOS < VC

Branch if Object Processor flag is set

Branch if on second half of display line (HC10 = 1)

AWNRO

17-23 unused
24-42 LINK

This defines the address of the next object if the branch is taken.
The address is defined as described for the bit mapped object.

43-63 unused

Stop Object

This object stops object processing and interrupts the host.

Bits Field Description
0-2 TYPE Stop object is type four
3 STOP_INT Enables the CPU interrupt

4-63 DATA These bits may be used by the CPU interrupt service routine.
They are memory mapped so the CPU can use them as data or

as a pointer to additional parameters.

Mixer Object

It is now possible to blend pixels in real time using the object processor. The technique can be used for
distance haze or depth cueing, shadows, mist, flame, cross fading.

The mixer object type loads a "haze" colour and a fraction. This colour and fraction are applied to all
subsequent objects with distance haze enabled. Bit 56 of the first phrase in bit mapped objects enables
distance haze.

The mixer object is one of a class of object with type five (bits 0..2 = 5). Bits 3..7 provide 32 subtypes for
future use. Subtype zero is used for the distance haze parameters. The fraction F is held in bits 8..15 and
is in the range 0 to 255/256. The color H is held in bits 16..31 and will be treated as CRY or RGB
depending on the display mode. When distance haze is enabled a pixel with color P is replaced with a
new color given by the formula

Color=F*P + (1-F) *H
Clearly the higher the value of F the closer the color will be to the original, the smaller the closer it is to the
"distance haze".

Distance haze slows down unscaled bit mapped objects to the same speed as scaled objects (1 pixel per
clock cycle).

Bits Field Description
0-2 TYPE Mixer object is type five.
3-7 SUBTYPE Mixer object is sub-type zero.

8-15 MIX_FRAC This the mixer control fraction, which controls the mix between

the object data and mixer color.

Description of Object Processor/Pixel path

The following two diagrams show where the object data path fits into the OBERON chip. All the diagrams
that follow are drastically simplified for clarity.

RGB Syncs
r--r—-——"~>"~>"""~>~>"~>""~>"~""">"">"~>""">">"">""~>"">""~>“"~""¥f§¢ -~ “~"“~“"“~“"~—7°7 - 1
| N ™ |
| Objet | Line | [Pixd | [Video |
| Processor Buffer Generator Timing |
| % % |
| |

External ess
Bus : BUs Processor Bus :
™1 Interface |
: 10 Bus :
Memory : :
Control Memory : Graphics .
‘ Controller Blitter Processor Misc |
| |

Oberon Chip Block Diagram

The processor bus is a 64 bit data, 24 bit address multi-master bus. The bus master can change on a
cycle by cycle basis with no overhead. The external CPU controls this bus when it is the bus master. The
10 bus is a 16 data 16 address bus used for reading and writing to internal memory and registers. The
bus interface logic and memory controller allows transfers of any width (one to eight bytes) to be made to
any width of external memory. The bus interface accommodates 16 and 32 bit microprocessors. The bus
interface also generates a multiplexed address for dynamic RAMs. The multiplexed address is a function
of memory width and number of columns. The memory controller only performs RAS cycles when the row
address changes. This allows contiguous regions of memory to be accessed much faster.

The line buffer is a bridge between two asynchronous parts of the chip. On one side are the processors
and memory. On the other side are the video timing and pixel generators. In fact there are two line
buffers. While one is written into by the Object Processor, the other is read by the pixel logic. Each line
buffer is a small 360x32 RAM with independent write strobes for the high and low words.

Each location in the line buffer may contain one 24 bit pixel or two 16 bit pixels.

|
| Controlling :
| State |
! Machine |
|
! :
| .
Object Data ! .
! [Address Object —> [Write back Path | Eogne
|| Generator Register =1 Logic .;_
|
Address | cLut :
Bus |
| |
|
Data . | :
Bus | _____ o

Object Processor Block Diagram

The Object Processor reads object headers and image data and writes back modified headers. The write
back logic normally increases the data address by the data width. If the object is scaled then the data
address is increased by a multiple of the data width and the vertical remainder is modified.

The object data contains either physical colours in the case of 16 and 24 bits-per-pixel objects or logical
colours in the case of 1,2,4 and 8 bits-per-pixel objects. Logical colours are translated into physical
colours by the colour look up table or CLUT.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 16 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

r--r—-——=——=—"—""~"~"~"~"~"~"~—"~—"~—"—~"—~"—~"—"—~"—~"—~"—"—"—"—"—"—"—"—"———— — — — B

! |

! |

| ﬁ Mux |

oaqy | |
[P)r;(;r Latch || Multiplexers CLUT [L Latch [Line !
| Buffer !

Bus | ‘
|

| |

: Counter Line :

| Buffer |

! Address |

! |

! |

Object Data Path

The Object Processor fetches data one phrase at a time until the image data, for that header, is
exhausted or until the line buffer address (X co-ordinate) has become invalid. The behaviour of the object
data path depends on the colour resolution of the object (bits-per-pixel) and on whether the object is
scaled.

In 24 bits-per-pixel mode each phrase contains two pixels (16 bits unused per phrase). The multiplexers
select each in turn and one 24 bit pixel is written into the line buffer per clock cycle. The CLUT is
bypassed for 24 bits-per-pixel objects.

In 16 bits-per-pixel mode each phrase contains four pixels. The multiplexers select two pixels at a time
and two pixels are written into the line buffer each clock cycle. The CLUT is bypassed for 16 bits-per-pixel
objects.

In 1, 2, 4 and 8 bits-per-pixel modes each phrase contains 64, 32, 16 and 8 pixels respectively. The
multiplexers select two pixels at a time. In 1, 2 and 4 bit modes the pixel is made up to eight bits by taking
the top bits from the top bits of the palette offset (a field in the object header). The two eight bit values are
used as addresses to a pair of identical CLUTS yielding two sixteen bit physical pixels which are written
into the line buffer every cycle.

If an object is scaled the Object Processor deals with one pixel at a time not pairs. Scaling is achieved by
incrementing the line buffer address independently of the counter controlling the multiplexer. For instance
if the line buffer address is incremented twice as often as the counter then the image will be twice as
wide.

There are two line buffers A & B. While A is written by the Object Processor B is being read by the pixel
logic. At the start of the next display line the buffers swap over so A is displayed and B is written. This
swap is effectively achieved by multiplexers on all the signals attached to the line buffers.

The above description is complicated by the following:

o If a pair of pixels must be written to an odd location in the line buffer they must be swapped
and one pixel delayed.

i The line buffer address decrements if the object is reflected.

i The colour to be written into the line buffer can be added to the previous value instead.
i One colour may be used as transparent and is not written into the line buffer.

o The line buffers also appear as memory to the rest of the system.

The pixel data path is shown in the following diagram. All the logic in this box runs from a different clock to
the previous logic, this is the video clock.

|
| |
! A |
| |
i | Line Latch J_ . CRY to Mux

2:1 mux . RGB

|| Buffer 1 1B
‘ RGB |
| |
1 c I

|
I | Line - i |
v | Buffer A = 24-bit RGB |
: Address B =CRY |
| C=16-hit RGB |

Pixel Data Path
The operation of the pixel data path depends on the video mode.

In 24 bits-per-pixel mode the line buffer is read at the video clock frequency. The line buffer data is simply
latched and presented at the pins as red, green and blue data bits.

In CRY mode the line buffer is read at half the video clock frequency. Each read yields two 16 bit CRY
values. These are multiplexed into the CRY to RGB conversion logic during succeeding video clock
cycles. In this logic the more significant eight bits specify the colour and the less significant bits specify
the intensity or brightness. The colour value is used as an index to three ROMs. These ROMs contain the
relative amounts of red, green and blue for each colour. The outputs of the ROMs are multiplied by the
brightness to get a final eight bits of red, green and blue.

In RGB16 mode the line buffer is read at half the video clock frequency. Each read yields two 16 bit RGB
values. Bits 0-5 form the six most significant bits of green, bits 6-10 form the five most significant bits of
blue and bits 11-15 form the five most significant bits of red. All other bits are set to zero.

In all these modes a small amount of additional logic sets the output colour to black during blanking and
to the border colour where appropriate.

A fourth mode exists to allow the system to support very high pixel rates using external multiplexers and
DACs. This is called direct mode. In this mode the line buffer is read at the video clock frequency and the
2:1 multiplexer is driven by the video clock directly. The output of the 2:1 mux is connected directly to the
red and green outputs of the chip. This allows 16 bit values to be output at twice the maximum video
clock frequency. This provides a video bandwidth of up to 4 times the video clock rate (in bytes per
second). These values should be re-synchronised, de-multiplexed and converted to analogue outside the
chip. In this mode the blanking and border signals are output on the blue pins.

The above picture is slightly complicated by the following:

° The least significant bit in CRY and RGB16 modes can be sacrificed (treated as zero) and
used to control an external video switch through the incrust output pin.

i In CRY and RGB16 modes a background colour may be written into the line buffer after it has
been read.

o In CRY and RGB16 modes the least significant bit may be used to determine whether the

mode is CRY or RGB16. This could be used to drop a decompressed RGB picture into a CRY
picture without having to do a RGB to CRY conversion.

Refresh Mechanism

The average refresh frequency is defined by the REFRATE bits in the MEMCONZ2 register. Refresh cycles
are grouped together in order to lessen the impact on system performance. However they cannot be
performed in very large numbers or they would create "dead spots" in which no processing was possible.
This could disrupt the display or sound production.

Oberon uses a counter to accumulate a count of refresh cycles. When this counter reaches eight then
eight refresh cycles are done and the counter is set to zero.

Refresh cycles are also invoked when the Object Processor reaches the end of the object list. After the
Object Processor executes a STOP object OBERON performs as many refresh cycles as are necessary
to decrement the refresh counter to zero.

This mechanism guarantees that the minimum refresh rate is maintained without interrupting the Object
Processor and without creating "dead spots" of more than a few microseconds.

Interrupts

There are a variety of interrupt sources in the system, and three micro-processors which can be
interrupted: the CPU, the RCPU, the GPU and the DSP. The interrupt structure is summarised in this
diagram:

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 17

External 0 DSP GPU CPU to RCPU —
External 1 Blitter Puck interrupt
Timer 1 GPU object Video
Timer 2 CPU to GPU GPU to CPU
Sync. serial Timer Stop object
CPU to DSP UART
DSP to CPU L]
r] Puck interrupt Video Oberon interrupt| 68000 CPU
Async. serial |L—] controller controller
— GPU to CPU
Stop object

True-colour mode is therefore unattractive for general use, as most images do not need its range of
colours, and it is desirable to avoid the detrimental effects it has on performance. True colour mode is
therefore a special case, and when it is used only true-colour images may be displayed.

In normal operation, the Jaguar display system is based on sixteen bit pixels. Images in memory may be
stored either as sixteen bit pixels, or as one, two, four or eight bit logical colours. These logical colours are
used as indices into a Palette or Colour-Look-Up-Table (CLUT), which contains their corresponding
sixteen bit physical colours.

Sixteen bit pixels may be stored as six bits of green, and five bits each for red and blue, but this no longer
allows smooth shading. There is therefore an additional scheme, known as the CRY scheme (cyan, red
and intensity, see below) which still allows smooth intensity shading. This CRY scheme is now discussed
in greater detail.

The DSP and GPU both contain interrupt control logic to allow each of their interrupt inputs to be
individually masked. The two interrupt controller both allow any of their interrupt inputs to be masked. The
interrupt sources are:

External 0 Interrupt from the expansion connector

External 1 Interrupt from the expansion connector

Timer 1 Interrupt from Puck programmable timer 1

Timer 2 Interrupt from Puck programmable timer 2

Sync. serial Interrupt from the synchronous serial / I’S interface.

CPU to DSP Interrupt to the DSP generated by a write to the DSPINTO bit of the DSP
control/status register

DSP to CPU Interrupt to the host generated by a write to the CPUINT bit of the DSP control/status
register

Async. Serial Interrupt from the Asynchronous Serial Interface

Blitter Interrupt generated by the blitter on blitter completion

GPU object Interrupt generated by the object processor on processing a GPU object

CPU to GPU Interrupt to the GPU generated by a write to the GPUINTO bit of the GPU
control/status register

Timer Interrupt generated by Oberon’s Programmable Interrupt Timer

Video Interrupt generated by the video time-base, on a line selected by the VI register

GPU to CPU Interrupt to the host generated by a write to the CPUINT bit of the GPU

control/status register
Stop object Interrupt generated by the object processor on processing a stop object

CPU to RCPU Interrupt to the RCPU generated by a write to the RCPUINTO bit of the RCPU
control/status register

Puck interrupt Composite interrupt signal from the Puck interrupt controller
UART RCPU speicific interrupt from the asynchronous serial interface

The CRY Colour Scheme

Colour Mapping

Introduction

Jaguar produces a video output using eight digital bits each for red, green and blue. This allows each
output to have two hundred and fifty-six intensity levels, and is enough to allow smooth shading from one
colour to another. This twenty-four bit scheme is known as true-colour.

Jaguar can produce a display based on true colour pixels stored in memory in long words, with eight bits
unused, and this is known as true colour mode. However, these thirty-two bit pixels are large and so
consume a lot of memory; and they also consume a lot of memory bandwidth to fetch from RAM for
display.

Gouraud Shading Requirements

The CRY scheme was derived principally to meet the requirements of Gouraud Shading. This is a
technique that models the appearance of a lit curved surface from a set of polygons. The problem the
technique helps to overcome is that if the intensity due to a light source is calculated for each polygon and
the polygon is painted in that colour, then the polygons that make up that surface are each clearly visible.

The technique of Gouraud shading helps avoid this by calculating the intensity at each vertex, and then
linearly interpolating along each polygon edge, and hence along each scan line that makes up the display.
If only white light sources are considered, then the only variation is one of luminous intensity, and not one
of colour. It is therefore attractive to have a colour scheme that contains an intensity vector, as the
Gouraud shading calculations have then only to be performed for one value, rather than the three values
that would have to be calculated in a true colour scheme.

As there is general agreement that eight bits is enough to give smooth intensity shading (and it is a round
number), it was therefore necessary to come up with a scheme that allowed the colour to be expressed in
eight bits.

Colour Space

The colour space to be modelled may be considered as the RGB cube shown, where the lowest vertex
represents black, and the highest white. The three edges running out from black are the three orthogonal
vectors red, green and blue. The sum of these three vectors can describe any point in the cube. The three
lower vertices therefore represent fully saturated red, green and blue, and the three higher ones yellow,
cyan and magenta.

WHITE

CYAN YELLOW

BLUE RED

BLACK

This colour space model is only one of many ways of considering what the human brain 'sees', but it has
the advantage of modelling the display system used by colour monitors, and of being mathematically
simple.

Physical requirements

The intensity vector can be considered as that component of the sum of the red, green and blue vectors
that lies along the diagonal of the RGB cube from black to white. This is not the 'true’ intensity, which is a
weighted sum of red, green, and blue; but it bears a linear relationship to it when the colour is not
changed.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 18 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6

It is necessary to come up with a scheme to encode the colour value in the remaining eight bits of the red, green and blue values (rounding where appropriate) and using a 32768 element lookup table is
pixel. The following requirements were made on this scheme: adequate.
1. All two hundred and fifty-six values should represent valid, and different, colours. . .
2. The colours should be well spread out across the colour space. Phy5|cal Implementatlon
3. Colours should be able to be mixed by linearly averaging their colour values. The eight bit colour value is used to index a look-up table of modifier values for each of red green and
4. An intensity value of zero must be black. blue; which is multiplied by the intensity value to give the output level for each drive to the display. The
. . . . i . i look-up tables are:
As the remaining colour space without intensity is two-dimensional, two vectors are required to represent
: h] RED o 0o 0 0O 0O O O O O O O O O O O O
a point in it. An r, theta scheme was discarded as it would not meet requirement two, and so a scheme 34 34 34 34 34 34 34 34 34 34 34 34 34 34 19 0O
based on two X, y vectors was chosen. 68 68 68 68 68 68 68 68 68 68 68 68 64 43 21 0
] -) - 102 102 102 102 102 102 102 102 102 102 102 95 71 47 23 0
To meet requirement one, the two vectors must describe a point on a square area. As no existing colour 135 135 135 135 135 135 135 135 135 135 130 104 78 52 26 0
space model is square when viewed along the intensity axis, it was necessary to come up with a new one. 169 169 169 169 169 169 169 169 169 170 141 113 85 56 28 0
. .)) . .] 203 203 203 203 203 203 203 203 203 183 153 122 91 61 30 O
The approach chosen, after considerable experimentation, was to take the view along the intensity axis of 237 237 237 237 237 237 237 237 230 197 164 131 98 65 32 0
the RGB cube, which is a hexagon, and distort it into a square. This does not quite meet requirement 3, 255 255 255 255 255 255 255 255 247 214 181 148 115 82 49 17
but is close to it. 255 255 255 255 255 255 255 255 255 235 204 173 143 112 81 51

255 255 255 255 255 255 255 255 255 255 227 198 170 141 113 85

255 255 255 255 255 255 255 255 255 255 249 223 197 171 145 119

255 255 255 255 255 255 255 255 255 255 255 248 224 200 177 153

CRY Colour Scheme 255 255 255 255 255 255 255 255 255 255 255 255 252 230 208 187
. . . : 255 255 255 255 255 255 255 255 255 255 255 255 255 255 240 221

The colour mapping scheme chosen is based on defining 256 points on the upper surface of the RGB 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
cube. GREEN 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255
19 38 57 77 96 115 134 154 173 192 211 231 250 255 255
21 43 64 86 107 129 150 172 193 215 236 255 255 255 255
23 47 71 95 119 142 166 190 214 238 255 255 255 255 255
26 52 78 104 130 156 182 208 234 255 255 255 255 255 255
28 56 85 113 141 170 198 226 255 255 255 255 255 255 255
30 61 91 122 153 183 214 244 255 255 255 255 255 255 255
197 230 255 255 255 255 255 255 255 255
32 65 98 131 164 197 230 255 255 255 255 255 255 255 255
30 61 91 122 153 183 214 244 255 255 255 255 255 255 255
28 56 85 113 141 170 198 226 255 255 255 255 255 255 255
26 52 78 104 130 156 182 208 234 255 255 255 255 255 255
23 47 71 95 119 142 166 190 214 238 255 255 255 255 255
21 43 64 86 107 129 150 172 193 215 236 255 255 255 255
19 38 57 77 96 115 134 154 173 192 211 231 250 255 255
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255
255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 240 221
255 255 255 255 255 255 252 230 208 187
255 255 255 255 255 248 224 200 177 153
255 255 255 255 249 223 197 171 145 119
255 255 255 255 227 198 170 141 113 85
255 255 255 235 204 173 143 112 81 51
255 255 247 214 181 148 115 82 49 17
237 237 230 197 164 131 98 65 32 O
203 203 203 183 153 122 91 61 30 O
169 169 169 170 141 113 85 56 28 O
135 135 135 135 130 104 78 52 26 O
102 102 102 102 102 95 71 47 23 O
0

0

0

GREEN

CYAN GREEN YELLOW

YELLOW

WHITE

C
RED R

[SY=Y-Y-¥--F-F-F-F-F-F-F-F-R-¥-)
w
N
o
a
©
©
=
w
=
=
o
S

MAGENTA

MAGENTA BLUE

N NN
aoa
aoa
NNN
o g g
aoa
N NN
aoa
aag
NNN
o g o
aoa
NNN
aog
a oo
NN N
aoa
aoa

In the figure shown, the hexagon corresponds to a view looking down onto the RGB cube. This hexagon
is distorted onto a square, whose X and Y co-ordinates are four bit values. This defines 256 colour levels.
The choice of green as the primary colour that lies on the middle of one face was made after observing
the effects of the three possible mappings, and corresponds with the expected result, as the human eye is
least able to distinguish shades of green.

Note that in each of the three areas defined on the hexagon and square, one of red, green or blue is at full
intensity, and the others vary. At the centre (white) they are all at full intensity. The intensity scale for any
given colour lies along the line between black, and the point on the top surface of the cube defined in the
colour table.

PRENNNNDNNDN
ocowoowuuuag
oNCowNoaaaa

BPERENNNNNNN
ocoowoowuuuuu
oNCowNaaaaa

PRENNNNDNNDN
ocowoowaauag
coONTCTOow~NTaoo»

PERENNNNNNN
ocoowoowuuuuu
oNCOowNaaaaa

PERENNNNNNN
oowoowauua g
cONCTOow~NTaoo g

PRENNNDNDNNDN
ocowoowauuag
oNCOwNaaaaa

68 68 68 68 68 68 64 43 21
34 34 34 34 34 34 34 34 19
0 0 0 0 0 0 0 0 0

w
o
w
ok
w
oh
w
ok
w
o b
w
o

Colours may be averaged by taking the average of their eight bit intensity value, and each of the four bit X
and Y components of the colour value. This will not produce exactly the same colour as the point midway
between them in the RGB cube, but will be close to it.

This is a summary of the pros and cons of the CRY scheme:

Advantages of CRY

* Smooth intensity shading from 16 bit pixels

« Better matched to the capabilities of the human eye than 5:6:5 bit RGB schemes
« Suitable for efficient Gouraud shading

Disadvantages

« Steps are visible in smooth changes of saturation or hue
« Translation from RGB to CRY is not straightforward

« Non-standard

RGB to CRY Conversion

The best technique is to calculate the intensity value, which is the largest of red, green and blue; and from
this the ideal ROM entry for that colour, by scaling the RGB values by 255 / intensity. This can then be
matched to the actual ROM tables to find the nearest match. A quick way of doing this is by a lookup
table. It is not necessary for this to have 22 entries, it turns out that taking the top 5 bits of each of the

N TN

26 October, 2002 CONFIDENTIAL ATARI © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 19

The Jaguar RISC Processors

“The wildest hath not such heart as you.
Run when you will.”

Act Il. Scene 1.

Midsummer contains three RISC processors. These are a proprietary Atari design optimised for graphics
animation and sound, and known as the J-RISC processors. A custom design is used because game
console requirements are quite different to work-station requirements, which is the target application of
most commercial RISC processors. The J-RISC processors will control all aspects of Midsummer
operations. The three J-RISC processors are:

« the Graphics Processing Unit, GPU, which is tightly coupled to the Blitter and is the rendering engine
« the Digital Sound Processor, DSP, which creates audio and has a DAC and private sound memory
« the RISC Central Processor, RCPU, which is the system controller and geometry engine

These three processing units are based on the same design, have identical instruction throughputs, and
have nearly identical instruction sets and control registers. However they are all intended for quite
separate tasks. The RCPU is new to Midsummer, the GPU and DSP were both present in Jaguar One.

This section describes all three processors, with differences between them marked appropriately.

or register indirect plus immediate offset addressing modes. It has jump relative and absolute instructions,
both of which may be made dependant on combinations of the zero, carry, overflow and negative flags.
There are also some more specialist instructions suited to computing matrix multiplies, and some useful
aids to floating-point calculations.

The J-RISC processor is a full thirty-two bit processor in that all internal data paths are thirty-two bits wide,
and all arithmetic instructions (except multiply) perform thirty-two bit computations. The instructions are
sixteen bits wide.

There are sixty-four internal thirty-two bit general purpose registers, of which thirty-two are visible at one
time. There is local high-speed thirty-two bit RAM, which is where its instructions and working data are
normally stored. There is access to external memory via the sixty-four bit co-processor bus, and the
processor can perform byte, word, long or phrase data transfers on this bus. It can also execute its
instructions from external RAM.

Design Philosophy

What is a Jaguar RISC Processor?

The Jaguar RISC Processor is a simple, very fast, micro-processor. It is intended for performing the
functions associated with generating graphics and sound, such as three-dimensional modelling, shading,
fast animation, unpacking compressed images, rendering, and audio synthesis and sample playing.

The Jaguar RISC processors correspond to the accepted notion of a RISC Processor (Reduced
Instruction Set Computer). This means that:

¢ most instructions execute in one clock cycle

« all computational instructions involve registers

« memory transfers are performed by load/store instructions

* instructions are of a simple fixed format, with few addressing modes
« there is a wealth of registers, and local high-speed memory

It has several features to give high computational powers, including:

« highly pipe-lined architecture

« one instruction per clock cycle peak throughput

* internal program and data RAM

« register score-boarding

« sixty-four thirty-two bit registers

« barrel shifter for fast shifts of any length

« one clock cycle sixteen bit multiplies and multiply/accumulates
« high speed matrix multiplication

« fast hardware divide unit

« high-speed interrupt response, including video object interrupts
« close coupling with the Blitter (in the case of the GPU)

The J-RISC processor also has many of the characteristics of a DSP (digital signal processor), in that it
can perform very fast multiply and multiply/accumulate operations. These are characteristically used in
graphics for 3D transforms, and in audio for digital filters. Some would consider the processor to be a
RISC / DSP hybrid.

The J-RISC processor normally executes one instruction per clock cycle, and is therefore capable of very
high instruction throughput. The RISC versus CISC debate is a complex one, and has now been largely
resolved in that RISC seems to have won. The RISC approach was chosen principally because it
occupies less silicon area. This leads to a processor design without micro-code, effectively the instruction
set is the micro-code, and most instructions execute in one clock cycle. The advantage is that instructions
are executed quicker, but the disadvantage is that some operations require more instructions to execute.

The J-RISC processor is also intended to perform rapid floating-point arithmetic. It has no floating-point
instructions as such, but has some specific simple instructions that allow a limited precision floating-point
library to be capable of well in excess of one million floating point operations per second.

The J-RISC processor was originally intended to be programmed in assembly language, rather than in a
compiled language, as the tasks it is intended to perform are simple repetitive operations, best written in
assembly language. It is therefore a great deal more “programmer friendly” then many RISC processors.
The RCPU has some specific enhancements to make it suitable for running C code at high speed.

Pipe-Lining

Programming the J-RISC Processor

The J-RISC processor is programmed in the same way as any other micro-processor. It has a full
instruction set with a broad range of arithmetic instructions, including add, subtract, multiply and divide;
Boolean instructions; logical and arithmetic shifts; and bit-wise instructions. It has a range of instructions
for loading and storing values in memory, with either register indirect, register indirect plus register offset,

The J-RISC processor design makes extensive use of pipe-lining to improve its throughput. This means
that although it can achieve a peak rate of one instruction per clock cycle, each instruction is actually
executed over several clock cycles, but only spends one clock cycle at each pipe-line stage. It is
important to understand this as it does have some significant consequences on behaviour.

For a typical instruction, such as ADD, the pipe-line stages are:
1 decode instruction
2 read operands from registers
3 add operands
4 write result back to register

In addition to these stages, a pre-fetch unit attempts to maintain a small queue of unexecuted
instructions, to keep the instruction execution unit busy.

Register Score-Boarding

The main side effect of the pipe-lined nature of its operation is the interaction of instructions at different
stages of the pipe-line. They may affect the same operand, or the same piece of the hardware, and so a
conflict can potentially arise.

For instance, if the instruction after an ADD was a second ADD of another value to the same register;
then if the two instructions were just to follow each other through the pipe-line, then the second ADD
would use the old value (the value from before the first ADD). Fortunately, the processor hardware
detects this erroneous condition and suspends execution until the correct value is ready. Clock cycles that
occur during these hold-ups are referred to as pipe-line stalls and are a fancy RISC designer name for
what are more traditionally known as wait states.

The figure shows the data flow associated with the operands of an arithmetic instruction. The thick lines
correspond to a pipe-line stage, so that when an instruction is at the Read Operands stage, a previous
arithmetic instruction may be at the Compute Result stage, and the potentially another one before that at
the Write Back Result stage.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 20 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

1 - Read Operands

I 2 - Compute Result

|3 - Write back Result

Two problems arise from this architecture:

1. The RAM used for the registers has only two data ports, so if the instruction at stage three has
to write back to a different register from the two registers being read by the instruction at stage
one, then a clash occurs.

2. The instruction at stage one of the pipe-line may need to read a value being computed by the
instruction at stage two, but this value will not be available until the instruction at stage two
reaches stage three.

The J-RISC processor operates what is known as a score-board to help the programmer avoid a whole
class of these problems. This tags registers that will alter once some operation has been completed, and
will force program flow to stall (wait) if an instruction reads a tagged register. This mechanism also applies
to the flags, and will stall if:

- an instruction would read a register that is still in the process of being computed by the ALU.

- an instruction would perform a conditional jump, or add or subtract with carry, before the flags
have been set as the result of some arithmetic operation.

- an instruction would read a register that is being read from internal memory.

- an instruction would read a register that is the target of a divide operation - as the divide unit
is relatively slow, this can cause a significant delay.

- an instruction would read from a register that is waiting to be loaded from slow external
memory (which takes a variable amount of time).

Register Write-Back
The score-board unit also controls the writing back of computed values. The registers are a bank of dual-
port RAM, so it is not possible to read two register values simultaneously while writing to a third.

If the register to be written back to is being read by the instruction currently at stage 1 of the pipe-line, or if
one of the operands of that instruction does not involve a register read, then the write-back will be
concealed - this is known as data forwarding. Otherwise, the instruction will be held up one cycle while the
computed value is written back.

The score-board unit controls all operations that involve writing to registers, and will also generate a wait
state if the instruction that would have executed reads two registers, neither of which is the target of the
write. Write-back data sources are:

- the result of an ALU computation

- the result of a divide operation (this occurs in parallel with the ALU)

- the data from an internal load operation

- the data from an external load operation

If two of these are to be written back simultaneously, execution is always held up for a clock cycle.

One technique that can be used to help avoid wait states from the score-board unit is to interleave two
sets of calculations, i.e. ensure that consecutive instructions do not use the same registers, but that
instructions two apart generally do.

Jump Instructions

Pipe-lining also affects the execution of jump instructions. The transfer of control does not occur until the
instruction after the jump instruction has been executed. This can be confusing, but helps to increase the

overall instruction throughput. The safest technique is to follow all jump instructions with a NOP (null
operation), but it is quite reasonable to place almost any other instruction here - but see the notes below
on program control flow on page 8.

Memory Interface

The J-RISC Processors are intended to operate in parallel with the other processing elements in the
Jaguar system. In order to do this, a well-behaved program should only make occasional use of the main
memory bus. The J-RISC processor therefore has some local fast thirty-two bit static memory.

This memory is intended to be used for both program and data. It can be cycled at the main clock rate,
and so is extremely fast. It may be viewed as a simple cache RAM, with software cache control - this
technique is known as visible caching. When the J-RISC processor is executing code out of internal RAM,
program fetch cycles will usually occupy about half the RAM bandwidth.

To load up a program into the RAM within the GPU, the best technique is to use the local DMA engine,
described later.

RCPU only: The RCPU fetches its instructions through an I-cache, which will cache instruction fetches
only. This is described in more detail on page 8.

To the programmer the local RAM, local hardware registers, and external memory all appear in the same
address space. The internal memory controller determines whether a transfer is local or external, and
generates the appropriate cycle. The only difference to the programmer is that only 8, 16, or 32 bit
transfers are possible within the local address space, whereas 8, 16, 32 or 64 bit transfers are permitted
externally. Within the local address space, only 32 bit transfers may be performed to registers (and the
GPU/blitter texture memory), but 8, 16 or 32 bit transfers may be performed to local memory.

The local RAM sits on an internal 32 bit bus. Also present on this bus are various hardware control
registers. When a transfer occurs outside the local address space, a gateway connects the local bus to
the main bus. If a sixty-four bit transfer is requested, a special register is used for the ‘other’ half of the
data. This gateway also contains a simple DMA engine that allows fast transfers between internal and
external memory.

This local address space is also available to external devices via the 16 bit I/O bus, see below.

The local bus can therefore perform transfers for four quite separate mechanisms. These are, in
decreasing order of priority:

1. CPUI/O access

2. Local DMA transfer

3. Operand data transfer
4. Instruction fetch

External View of Local Memory Space

The internal address space is accessible by any other Jaguar bus master. This is part of the system 1/O
space. All of the I/O space is normally viewed as 16 bit read/write memory, but because the memory is
actually 32 bits wide, all transfers must be performed in word pairs, in the order low address then high
address.

GPU only: by adding 8000 hex to the I/0 address the internal memory space is available to external bus
masters as 32 bit write only memory, which is faster to access for a bus master which can
perform 32 bit transfers. Specifically, this allows the blitter to copy data into the GPU space
more rapidly than it would using the 16 bit space - for maximum transfer speed use the blitter
in phrase mode, writing to the 32 bit address range.

Data Ordering Conventions

The J-RISC processor can operate in both a big-endian and little-endian environment, and as long as the
memory interface is programmed to the correct endian mode, and the transfer requested is the width of
the operand required, then this operation is largely invisible to the programmer.

The instruction execution order may be little-endian or big-endian - with the exception that move
immediate data is inherently little endian, i.e. its word ordering is least significant word then most
significant word. (Big-end ordering sucks)

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 21

Load and Store Operations

Arithmetic Functions

The J-RISC processor has a set of load and store instructions, each of which take two register operands.
One register is used to provide the address, the other is either read to supply data to be stored, or is
written with load data.

Load and stores may be performed at byte, word, long-word and phrase width. Bytes and words are
aligned with bit 0, and when loaded the rest of the register is set to zero. When phrases are read or
written, a register within the local address space should already contain the other long-word for store
operations, or is loaded with the other long-word for load operations. The fastest way to perform block
transfers, however, is to use the DMA controller.

Load and store operations may also be performed using one of two simple indexed addressing schemes.
These are both based on using either R14 or R15 as a base register, with either a five bit unsigned offset
(in long words) encoded into one of the register fields, or another register containing the offset. There is a
two clock cycle overhead involved in using these instructions, as the address has to computed.

Load and store operations will normally complete in one clock cycle, or two clock cycles for indexed
addresses. The transfer may not be complete at this point, and if another load or store operation occurs
before the previous one has completed it will be held up. Load data is written under the control of the
score-board unit, which is described elsewhere.

The gateway between the local bus and the external co-processor bus contains a control block for
generating external memory transfers. When this block is idle, load and store operations complete as
quickly as they would in local memory. For load operations, the data is not loaded into the target register,
however, until the external transfer has taken place. The score-board mechanism prevents use of this
data before it has been loaded, but other computation may take place. If there is another load or store
instruction in the program before the gateway has completed its transfer, then it will be held up until the
gateway is idle.

Operand data transfers may occur at two bus priorities in external memory, either at the normal priority, or
at the higher DMA priority level. This is controlled by the DMAEN flag. This does not affect program reads,
which are always at normal priority. Bus priority is discussed elsewhere. This priority control bit must not
be changed while an external memory cycle is active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it in an interrupt service routine.

Note that it is quite safe to use the same register as both operands of a load (or store) operation. These
operations are quite legal:

| oad (r1),r1 over-wite rl with data after using it as address

| oad (r14+2),r14 ; simlarly, this is perfectly safe

store r2,(r2) as is this, though | ess useful

The J-RISC processor contains a powerful ALU section, which contains a thirty-two bit adder/subtracter, a
thirty-two bit Boolean function unit, a sixteen bit parallel multiplier, and a thirty-two bit barrel shifter, all of
which perform their respective functions in one clock cycle.

It also contains a divide unit. This performs serial division at the rate of two bits per clock cycle, on thirty-
two bit unsigned operands, producing a thirty-two bit quotient. The operation of this runs in parallel with
normal operation.

The ALU has the following set of flags:

z zero set appropriately by all arithmetic operations, normally being set if the result

of the operation was zero.

N negative set appropriately by all arithmetic operations, normally being set if the result

of the operation was negative (bit 31 is a one).

C carry set according to carry or borrow out of all add and subtract operations; set
with the bit that is shifted out of shift and rotate operations for shift by one;

left undefined by other arithmetic operations.

\% overflow set if arithmetic overflow, i.e. carry or borrow has occurred into the sign bit of
a two’'s complement number; also indicates the state of the bit set or cleared

by a bit set or clear instruction prior to the operation.

DMA Controller

There are also some specialist arithmetic functions:

« Saturate O the thirty-two bit operand is clipped to an unsigned value of eight, sixteen or twenty-four
bits. This is helpful for dealing with accumulated rounding errors, etc. These are SAT8, SAT16 and
SAT24.

« Floating Point support O functions available are an instruction which gives the amount by which a
value has to be shifted to re-normalise it (NORMI), and an instruction which removes the exponent
from a floating-pint value (MTOI).

« Pixel Averaging O sixteen bit RGB or CRY pixels can be unpacked so that their fields are separated
to allow the values to be added together without overflow occurring from one field to the next for up to
32 pixel. See the description of PACK and UNPACK below.

DSP only: The DSP replaces the unsigned saturation functions of the GPU with two signed operations.
SAT16S takes a signed 32 bit operand and saturates it to a signed 16 bit value, i.e. if it is less
than $FFFF8000 it becomes $FFFF8000 and if it is greater than $00007FFF it becomes
$00007FFF. SAT32S takes a signed 40 bit operand (see the section below entitled 'Extended
Precision Multiply / Accumulates') and saturates it to a signed 32 bit value in a similar manner.

The J-RISC processor has a simple DMA controller as part of the interface between its internal and
external space (this interface is called the bus gateway). This allows phrase-mode transfer to be
performed between internal and external memory at a rate limited solely by the external bus speed. This
allows a maximum speed of one phrase transfer every two clock cycles to and from of external DRAM.

This DMA engine is intended to speed up program loads, and also to reduce processor usage of the
external bus by allowing data structures to be block transferred between internal and external memory. As
internal memory can be accessed using byte and word transfers, as well as longs, data structures can be
easily manipulated internally.

The controller can only perform transfers either from internal memory to external memory, or vice versa. It
cannot move things within the internal space, or perform transfers within external memory. It can only
transfer a whole number of phrases, and the start address must lie on a phrase boundary in external
memory, and on a long-word boundary within internal memory.

The DMA controller is very easily driven. An internal address and an external address must be written for
each transfer, because they count during the transfer; some mode bits should be set to give the direction
and bus priority of the transfer, unless these have not changed since the previous transfer; and the a byte
length count is written, and writing this initiates the transfer. The DMA controller must only be started by
the processor to which it belongs, unless that processor is not running.

The individual control registers are discussed further on in this document.

Interrupts

The J-RISC processors can be interrupted by several sources. Interrupts force a call to an address in
local RAM, given by sixteen times the interrupt number (in bytes), from the base of RAM. It is the
responsibility of the programmer to preserve the registers and flags of the underlying code. Primary
register 31 is the interrupt stack pointer. Primary register 30 is corrupted when instruction flow is
transferred to the interrupt service routine. Neither register should be used for any other purpose when
interrupts are enabled.

Interrupts are allocated as follows:

GPU:

4 Blitter, indicating Blitter completion

3 Object Processor

2 Timing generator

1 DSP interrupt, the interrupt output from Puck
0 CPU interrupt

RCPU

5 UART interrupt

4 Video interrupt

3 Object processor CPU interrupt
2 GPU to CPU interrupt

1 Puck interrupt

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 22 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

0 CPU interrupt

DSP:

External interrupt 1, from the expansion bus

External interrupt 0, from the expansion bus

Timer interrupt 1, from the Puck programmable timer 1
Timer interrupt 0, from the Puck programmable timer O

I°S interface interrupt, from the synchronous serial interface
CPU interrupt, from a write to the DSP control register

OFRrNWMO

The flags register contains individual interrupt enables for each of these sources, as well as a master
interrupt mask for all interrupts. When the master interrupt mask is set, the primary register bank is
selected (see below).

When an interrupt occurs, the master interrupt mask bit is set. The individual enables are not affected, but
no other interrupts will be serviced until the mask bit is cleared. The interrupt service routine should
normally clear the master interrupt mask, and the appropriate interrupt latch, and enable higher priority
interrupts immediately.

The value pushed onto the R31 stack is the address of the last instruction to be executed before the
interrupt occurred. The interrupt service routine should therefore add two to this value before using it to
return from the interrupt.

The interrupt latches may be read in the status port, and are cleared by writing a one to their clear bits,
writing a zero leaves them unchanged.

The cause of the interrupt may be determined by the location jumped to, but not from the flags register, as
more than one interrupt latch bit may be set.

There is a certain degree of interrupt prioritization, in that if two interrupts arrive within a few clock cycles
of each other, the higher numbered will be serviced first. Beyond this, interrupt prioritization is under
software control, as described above.

The only operations that are atomic are single instructions, or certain instruction combinations (see
below). Interrupts may be disabled by clearing all the enable bits. It is therefore not practical for the
interrupt stack to be shared with the underlying code, unless all interrupts are masked across stack
operations.

An example interrupt service routine, which does no more than clear the interrupt, is shown below. The
interrupt source was interrupt 2.

int_serv:
novei GPU_FLAGS, r 30 ; point R30 at flags register
| oad (r30),r29 ; get flags

addi tional code may be inserted here

belr #3,129 ; clear | MASK
bset #11,129 ; and interrupt 2 latch
| oad (r31),r28 ; get last instruction address
addq #2,r128 point at next to be executed
addq #4,r31 ; updating the stack pointer
junp (r28) ; and return
store r29, (r30) ; restore flags

Similar interrupt service routines can handle all the interrupts. Note the following points about this code:

« Registers R28 and R29 may not be used by the under-lying code as they are corrupted, in addition to
R30 and R31 which are always for interrupts only.

« Interrupts are re-enabled on the instruction after the jump. If they were enabled any sooner then no
other interrupt service routine would be able to use R28 and R29, as they could potentially corrupt
them before this service routine had completed.

« You should modify the bit set instruction shown as setting bit 11 to set the appropriate bit for the
interrupt being serviced.

< If you modify this interrupt procedure to re-enable interrupts prior to the exit code, then you should
change R30 to another register, as R30 is corrupted when a second interrupt occurs.

GPU only: If the interrupt source was the Object Processor, then the interrupt service routine should read
the Object Code registers, if required, and then re-start the Object Processor by writing to the Object
Processor Flag register, as quickly as possible.

For your information: it may interest you to know how the RISC processor enters an interrupt service
routine. When an interrupt occurs, the following “hidden” instruction sequence is forced in the instruction
stream at the end of the current atomic operation (one or more instructions):

novei #servi ce_address, r30 ; pointer to ISR entry
junp (r30) ; junp to ISR
nop

This code in not fetched from anywhere, but is directly injected into the instruction stream, so the PC read
that you read while this is happening is that of the last instruction to be executed prior to the interrupt.

Atomic Operations

It is necessary for certain operations to be atomic, i.e. interrupts may not occur during these operations.
Certain instruction types temporarily lock out interrupts while they complete their operation. These are:

* Immediate data moves, using the MOVEI instruction. Interrupts are locked out while the two words of
immediate data are fetched.

« Matrix multiply operations, using the MMULT instruction. Interrupts are locked out until the operation
has completed.

« Multiply and accumulate operations, using the IMULTN and IMACN instructions. The result register is
not preserved by interrupts, and therefore any multiply/accumulate operation must consist of a
sequence of IMULTN and IMACN instructions followed by a RESMAC instruction, with no intervening
instructions. The IMULTN and IMACN instructions are always atomic with the succeeding instruction.
See the section below on multiply / accumulate instructions.

« Jump instructions are always atomic with the instruction which succeeds them.

Sharing Hardware

The Jaguar hardware supports parallel processing, which is both a blessing and a curse. It offers much
greater processing power when used well, and much greater scope for disaster when used badly.

There is nothing new about parallel processing, you might consider an interrupt and its underlying code to
be parallel processes. However the Midsummer hardware supports four CPUs which can all execute
simultaneously, and which can all support interrupts from a variety of sources. Most of the problems this
can introduce are at a software level and are beyond the scope of this document, however there are some
important warnings when it comes to sharing the Jaguar hardware.

Most of the hardware in Jaguar cannot be shared between two processes without special steps to ensure
that only one can use it at a time. This is usually implemented by a semaphore, by which one process
flags another if it can use the hardware resource. The two processes might be running on separate
processors, or might be running on the same one if at least one is an interrupt.

An example of a hardware resource that cannot be shared is the blitter, where it would be disaster if two
processes tried to set up a set of blitter parameters at the same time. Within the J-RISC processors, the
divide remainder and mode, the high long word register, and the matrix multiplier all fall into this area.
Careful attention should be paid to this if you want to share a piece of hardware.

Program Control Flow

The J-RISC processor runs through memory executing instructions unless it encounters a jump
instruction, an interrupt occurs, or it stops itself. The instruction stream is 16 bit words, which are fetched
into a small pre-fetch queue which requests 32 bits per fetch.

Jump Instructions

Two types of jump are supported, relative and absolute. Jump relative takes a signed five or ten bit offset,
which is treated as an offset in words, and is added to the program counter. Jump absolute transfers the
contents of a register into the program counter.

Both types of jump may be conditional on the contents of the ALU flags. If the appropriate condition is not
met, then the jump instruction is ignored and program flow continues with the next instruction after the
jump. Only the five bit offset relative jumps are conditional, then ten bit offset jump relative is
unconditional.

The instruction after a jump is always executed. This is a side-effect of the pre-fetch queue. Programmers
may choose either to place a NOP after every jump instruction, or may take advantage of this to place a
useful instruction after the jump which will be executed whichever branch is followed.

subqt #4,131 ; pre-decrenent stack pointer iad i i i i i
mwg pc. 130 ; gddress of interrupt gd code The program counter may also be copied into a register, using the MOVE PC,Rn instruction.
store r30, (r31) ; store return address
X TR
26 October, 2002 CONFIDENTIAL ATARI N © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 23

The J-RISC processor can cease operation by clearing the appropriate GO bit in the local control register
(described below). It may then only be restarted by an external write to this register. The GO bit must only
be cleared by the processor it controls, although any processor can set it (although it may be cleared
externally for debug when in single-stepping mode).

When a jump instruction is executed, and the condition is met, the following sequence occurs:

* interrupts are temporarily masked

« the next instruction is allowed to flow through the pipe-line

« the pre-fetch queue is flushed

« the new address is loaded into the program counter

¢ instruction fetch start from the new address to reload the pipe-line
« the temporary interrupt mask is cleared

lllegal Instruction Combinations

« Do not place a MOVEI instruction after a jump, as the jump will take effect before the data is fetched,
and so will change where the immediate data is fetched from.

« Do not place two jump instructions one after the other (next to each other in memory), the results are
not predictable, and may not be relied on.

« Do not place a MOVE PC to register instruction immediately after a jump absolute or jump relative
instruction, the value read can not be relied upon.

« Do not follow an IMACN or IMULTN instruction by anything other than an IMACN instruction or a
RESMAC instruction (see below).

« Do not precede an MMULT instruction by a LOAD or STORE instruction.

« Do not follow a jump instruction with an indexed store or load instruction. This may cause interrupts
to behave unpredictably.

Conditional Jumps

Conditional jumps encode from a five bit flag field. This gives useful jumps as follows (unused codes are
reserved for future modifications).

11000 N minus Ml negative flag is set

11001 Ne /Z ?? negative flag is set and zero flag is clear

11010 NeZ ?? negative flag is set and zero flag is set

11011 unused

11100 debug 5 halt DHT* halts the processor (GO cleared), the
jump is not taken

11101 debug 6 halt and DHTI* | causes a CPU interrupt, halts the

interrupt processor (GO cleared), the jump is not

taken

11110 unused

11111 0 false F jump never

* These codes are new to Midsummer, and require the enhanced mode flag to be set.

Help for Debugging

The best approach is not to write bugs in the first place. If you are not perfect, then the six debug codes
listed above in the conditional jump table allow you to both pause and stop the J-RISC processor, and
also to interrupt it and interrupt the CPU. This should allow a debugger to be written both to run on the
processor itself by interrupting itself, and to run on another processor, which will be more useful.

The J-RISC processor is also capable of single-stepping, as discussed below.

All these are special jump condition codes. They will work for JUMP or JR, and in all cases the jump is
not taken. The enhanced flag must be set for any of these to work. Because of pipe-lining effects the
instruction after the jump will usually get executed before the debug action is taken, e.g. the DSS code
will enter single-step mode after the next instruction has been executed (if it was already present in the
pre-fetch queue).

The six functions are as follows:

1. The processor interrupts itself on interrupt 0. This is effectively causing an exception, and may be
considered analogous to the 68000 illegal instruction.

Field Decode Name Code :Jump on Condition 2. Anexternal CPU interrupt is generated. Execution will continue, so this is mostly useful for flagging
00000 1 true T jump alwgys some condition.
00001 Iz not equal NE zero flag is clear 3. The processor enters single-step mode, i.e. it suspends program execution, usually after the next
00010 Z equal EQ zero flag '.S set - instruction, and waits for the SINGLE_GO command to continue. See the discussion on single
00011 C+Z low or same LS* carry flag is set or the zero flag is set)) X
n stepping. This is like a break-point.
00100 | /C carry clear cC carry flag is clear o o] . o)
00101 IC /12 high Hi carry flag is clear and zero flag is clear 4. Thisis tt:je corgpmanon of Lunctlons 2I and 3, soéhat the przgcgssor sufsi)endsb!ts gxecutlon into single-
00110 | /IC+2Z > carry flag is clear and zero flag is set step mode and interrupts the external CPU to advise it. This is a useful combination.
00111 \ overflow set VS* overflow flag is set 5. The processor stops itself. This effectively aborts operation.
01000 | C carry set CS carry flag is set 6. The processor stops itself and generates an external CPU interrupt. This might be useful for trapping
01001 Ce/Z ?27? carry flag is set and zero flag is clear the processor executing code that it should not be.
01010 CeZ ?? carry flag is set and zero flag is set
01011 [vV overflow clear vC* overflow flag is clear Single Step Operation
01100 NeV + /Ne/V greater or GE* overflow and negative flags are the
equal same As an aid to the debugging of programs, you can set the J-RISC processor to single step through

01101 Ne/V + INeV less than LT* overflow and negative flags differ programs, pausing between instructions until restarted. This operation is controlled by an external CPU as
01110 | NeVe/Z +/INe/V+/Z | greater than GT* not zero, and overflow and negative follows:

flags are the same 1. Setup the program counter, then set the GPUGO and SINGLE_STEP control bits in the control
01111 Z + Ne/V + NV less or equal LE* zero, or overflow and negative flags register.

- differ - - 2. Poll for the SINGLE_STOP flag in the status register - at this point the first instruction has been

10000 debug 1 self interrupt DSI* causes the GPU to interrupt itself on executed.

interrupt 0, the jump is not taken . . i
10001 debug 2 interrupt DO causes a CPU interrupt, the jump is not 3. Setthe SINGLE_GO bit in the control register (keeping GPUGO and SINGLE_STEP set).

taken 4. Poll for the SINGLE_STOP flag being set (this is the read version of the SINGLE_STEP flag), which
10010 | debug 3 single step DSS* | enters single step mode, the jump is not indicates that the next instruction has been executed.

taken 5. Repeat from step 3.
10011 debug 4 single stepand | DSSI* | causes a CPU interrupt, enters single

interrupt step mode, the jump is not taken e

10100 | /N plus PL negative flag is clear Self MOdIfymg Code
10101 | /N-/z ?? negative flag is clear and zero flag is Self-modifying code carries implicit dangers, both for pre-fetch queues and for caches. This is because

clear the hardware may be maintaining two copies of the instructions, one in physical memory, and one in the
10110 | /IN*Z ?? negative flag is clear and zero flag is set pre-fetch queue or cache. It is never safe to modify code that may be already cached, but this only
10111 unused

{

© 1992, 1993, 1994, 1995 ATARI Corp.

AR

CONFIDENTIAL 26 October, 2002

Page 24 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

applies to the RCPU. Many programmers believe that self-modifying code is inherently bad style, as it is
hard to understand and easy to get wrong. But for those of you who must, here are the rules.

It is possible to write self-modifying code for un-cached memory, as the only issue that arises is that the
instruction may already be fetched into the pre-fetch queue. The safest way to write self-modifying code
(RCPU: in memory that is not cached), and one which will guarantee portability, is to flush the pre-fetch
queue by performing a JUMP or JR before executing the modified code. This ensures that the instructions
are fetched from RAM, and all is consistent.

The amount of data in the pre-fetch queue at any moment can vary, and its fetch timing can be disturbed
if an external processor is accessing internal space, so it is highly dangerous to modify code a short
distance ahead of the current execution point and then linearly execute it. It is necessary to have a
distance of at least twelve instructions if you don’t wish to use JUMP or JR.

MOVEI #target,r3

STORE r7,(r3) nodi fy the code
NOP ; 11 intermediate instructions

target: ADD ro, ro0 ; code to be nodified

The DCT operation cannot be performed efficiently using the multiply/accumulate mechanism described
above because each matrix contains sixty-four operands so that either one of them would occupy all the
registers!

The J-RISC processor therefore has a MMULT instruction, which initiates a sequence of between three
and fifteen multiply and accumulate instructions, as described above, corresponding to one product term
of the result matrix. One of the source matrices is held in the secondary register bank, the other in local
RAM. The matrix held in registers is packed, i.e. two elements per register, with the lower element in the
low bits. This allows all of an eight by eight matrix to be stored in the secondary register bank, and is the
raison d'étre of the second bank..

A matrix multiply is initiated by the MMULT instruction. This takes as its source parameter the register,
which is always in the secondary register bank, containing the first two elements of the matrix row. Its
destination parameter is the register, in the currently selected register bank, in which to write the result.

The matrix held in RAM may be accessed in either increasing row or increasing column order, in other
words the data for each successive multiply operation are either one location apart for row access, or the
matrix width apart for column access.

Like interrupts, the matrix multiply operation is performed by forcing internally generated instructions into
the instruction stream. The first instruction is IMULTN, the middle ones IMACN, and the last RESMAC.
These have their operands modified in the manner described above.

The MMULT instruction must not be preceded by a LOAD or STORE instruction.

Divide Unit

Multiply and Accumulate Instructions

The J-RISC processor supports multiply and accumulate (MAC) operations. These involve multiplying two
values together, and adding their product to the sum of the products of some previous multiply operations.
These are typically used for matrix multiply and digital filtering type applications.
Due to the pipe-lined nature of the design, the multiply and its associated add do not take place in the
same clock cycle. MAC instructions are not therefore like other instructions, in that a special instruction is
needed to write back their result.
Take as an example multiplying R8 times R9, R10 times R11, R12 time R13, and placing the sum of their
products in R2. All values are signed. The instructions are as follows:

imultn rg8,r9 ; conpute the first product, into the result

i macn r1o,ri11 second product, added to first
i macn r12,r13 third product, accunulated in result
resnmac r2 sum of products is witten to r2

MAC instructions may only be followed by further MAC instructions or by the RESMAC instruction. No
other combinations are permitted.

DSP only: When multiply and accumulate operations are performed, using the IMULTN, IMACN and
RESMAC instructions, or the MMULT instruction, the accumulated result is actually calculated
as a forty bit signed integer. The top eight bits are overflow bits, and they may be read in the
multiply/accumulate high result bits register (described later). However, their intended use is
with the SAT32S instruction, which takes as its forty bit input the register operand as the low
thirty-two bits and the eight overflow bits of the accumulator as its top eight bits, and saturates
the forty bit signed integer to thirty two bits; i.e. if it is less than FF80000000 it becomes
FF80000000 and if it is more than 007FFFFFFF it becomes 007FFFFFFF.

The SAT32S instruction should therefore only be applied to the result of a multiply /
accumulate operation, and before any further multiply / accumulate operations are performed.
The SAT16S instruction operates only on its thirty-two bit register operand and takes no
account of the overflow bits.

Matrix Multiplies

The divide unit performs unsigned division, taking as operands a thirty-two bit divisor and dividend, giving
a thirty-two bit quotient and a thirty-two bit remainder. The quotient is the result of the divide instruction,
and replaces the dividend in the destination register. Divides are performed at the rate of two bits per
clock cycle, so that the complete divide operation completes in sixteen clock cycles. The divide instruction
has no effect on the flags.

If another instruction attempts to read the quotient or start another divide operation while the divide unit is
active, then the pipe-line will stall until the divide unit has completed. Otherwise, the divide unit has no
effect on instruction flow, as it runs in a completely separate ALU to all other arithmetic functions.

The remainder register may be read after the divide has completed, this value in this register may either
be positive, in which case it contains the actual remainder, or negative, in which case it contains the
remainder minus the divisor. The reason for this is that the divider performs non-restoring division at the
rate of two bits per clock cycle.

A simple binary division works thus:

subtract the divisor fromthe dividend
if the result is positive
shift 1 into the quotient
el se
shift 0 into the quotient
add the divisor back to the dividend (the restore)
shift the dividend left 1
r epeat

As you can see this operation can involve two add/subtracts because of the restore. Non-restoring
division gets round this by omitting the restore, but performing an add instead of a subtract at the next
iteration. This is because when you do the restore you add the divisor, then at the next iteration you are
effectively subtracting half the divisor (because of the shift), the sum of which is the same as adding half
the divisor.

When the divide unit completes, the remainder register contains the un-restored dividend value, so it may
need the divisor added to it if it is negative, to give the true remainder..

Divides may also be performed on unsigned 16.16 bit values, by setting the offset control flag in the divide
control register. The quotient is then also an unsigned 16.16 bit value.

The J-RISC processor contains a mechanism for performing integer matrix multiplies at a burst rate of the
maximum obtainable from the hardware multiplier, which is one multiply per clock cycle. This is generally
useful, but has been designed in particular for the matrix multiplies required by the Discrete Cosine
Transform algorithm. One technique for this involves performing two 8x8 integer matrix multiplies in
succession on a matrix, using the same fixed coefficients, but rotated for the second multiply.

Register File

The J-RISC processor contains a register file of sixty-four thirty-two bit registers. All of them may be used
as general purpose registers, although some are also assigned special functions.

All instructions contain two five bit register operand fields, although they are not always used as such.
Where an instruction references a register, this five bit field is turned into the register address. There are
two banks of these 32 bit registers, primary and secondary. The primary register bank, bank 0, is always

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 25

used for interrupt service. This is forced by the IMASK bit: when it is set selection of bank 0 is forced. If
IMASK is clear REGPAGE is obeyed.

Bank select bits are provided in the flags register, and special MOVE instructions allow data to be moved
between banks.

Instruction Set

External CPU Access

The internal address space is accessible to an external bus master at any time - external access having
the highest priority on the local bus. This means, for example, that the Blitter might read data from the
local RAM.

The local address space is accessible for read or write at the addresses given elsewhere in this
document, and these locations are presented as sixteen bit memory, which must always be accessed as
long words in the order low address then high address.

GPU only: To allow faster transfers into the GPU space, all the registers are also available as thirty-two
bit memory, at an offset of 8000 hex from their normal addresses. At this address, the internal
memory is write only.

If the Blitter is being used to write into the GPU space, then phrase wide transfers may be

The J-RISC processor instructions are all sixteen bits, made up as follows:
ishahsfiahiholofs][7[6[5][4][3]2]1]0]
L opcode_| L regl_| L reg2 _

i op code defines the instruction to be executed
i reg2 is the destination operand, or the only operand of single operand instructions
i regl is the source operand

The reg2 and regl1 fields usually hold a register number, but have other meanings with some instructions.
The instruction set is as follows, where the syntax is
<Op code name> <source>,<destination>

Note: The regl field of single operand instructions must always be set to zero for compatibility with
manufacturing test modes and future enhancements.

performed, as the bus control mechanism will automatically divide these up to suit the width of ABS Integer absolute value
the memory being addressed.
Syntax ABS Rn
Pack and Unpack Processors all variants

GPU and RCPU only.

The pack and unpack instructions provide a means for averaging up to 32 CRY pixels. The unpack
operation leaves the intensity value unchanged, shifts the lower colour nibble up 5 bits, and the higher
colour nibble up 10 bits. It can also be operated with 16 bit RGB pixels in a similar manner by setting the
PACK_RGB control bit. The pack operation reverses this:

CRY Pixels
Register containing packed pixel

|31|30|29|28|27IZG|25|24|23|22IZl|20|19|18|17|16|15|14|1412|11|1(1 9| 8 7| 6| 5| 4| 3| 2| 1| 0

unpack
pack

EEEEEECEEEEEEEECEEEEEEEEECEDEERE

Colour field 1 Colour field 2 Intensity field

Register containing unpacked pixel

RGB Pixels
Register containing packed pixel

|31|30|29|25|27I26|25|24|23|22IZI|20|19|15|17|16|15|14|13|12|11|14 9| 8| 7| 6 5| 4| 3| 2| 1| 0

unpack
pack

|31|30|29|28|27IZG|25|24|23|22IZI|20|19|18|17|16|15|14|1412|11|10| 9| 8| 7| 6 5| 4| 3| 2| 1| 0

Red field Blue field Green field

Register containing unpacked pixel

There are five unused bits above each field in an unpacked pixel, allowing up to 32 unpacked pixels to be
added together. If a power of two unpacked pixel values are added, then a shift can be used to re-align
them prior to packing the average value.

The bits that do not contain packed or unpacked pixel data are always set to zero.
This is useful for anti-aliasing and scaling effects.

Instruction No. 22

Description 32 bit integer absolute value. Has the same effect as NEG if the operand is negative,
otherwise does nothing. Note that this instruction does not work for value 8000000h,
which is left unchanged, and with the negative flag set.

Flags z set if the result is zero
N cleared
C set if the operand was negative
\% not defined

Encoding 010110 00000 DDDDD

DDDDD Destination register number, 0-31

Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid

ADD Integer add
Syntax ADD Rn,Rn
Processors all variants

Instruction No. 0

Description 32 bit unsigned or two's complement signed integer add, the result is the destination
register contents added to the source register contents, and is written to the destination
register.

Flags z set if the result is zero
N set if the result is negative
C represents carry out of the adder
\% set if signed arithmetic overflow has occurred

Encoding 000000 SSSSS DDDDD

SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 26 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
. C represents carry out of the adder
ADDC Add with carry | \% set if signed arithmetic overflow has occurred
Syntax ADDC Rn,Rn Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid
Processors all variants
Instruction No. 1 |ADDQT Add with quick data, transparent
Description 32 bit unsigned or two’s complement integer add with carry in according to the Syntax ADDQT n,Rn
previous state of the carry flag, otherwise like ADD.
Processors all variants
Flags z set if the result is zero
N set if the result is negative Instruction No. 3
C represents carry out of the adder . - - - - —
Vv set if signed arithmetic overflow has occurred Description 32 bit unsigned or two’s complement integer add, like ADDQ except that it is
transparent to the flags, which retain their previous values.
Encoding 000001 SSSSS DDDDD
SSSSS Source register number, 0-31 Flags ZNCV unaffected
DDDDD Destination register number, 0-31 Encoding 000011 NNNNN DDDDD
Register Usage Cycle1l Source register read & Destination register read NNNNN- Immediate data, 1-32, where 32 encodes as 0
Cycle3 Destination register write and flags are valid DDDDD Destination register number, 0-31
- . Register Usage Cycle 1 Destination register read
| ADDQ Add with quick data | Cycle 3 Destination register write
Syntax ADDQ _ nRn [AND Logical AND
Processors all variants
Syntax AND Rn,Rn
Instruction No. 2 -
Processors all variants
Description 32 bit unsigned or two’s complement integer add, where the source field is immediate -
data in the range 1-32, otherwise like ADD. Instruction No. 9
Encoding 000010 NNNNN DDDDD Description 32 bit logical AND, the result is the Boolean AND of the source register contents and
NNNNN Immediate data. 1-32. where 32 encodes as 0 the destination register contents, and is written back to the destination register.
DDDDD Destination register number, 0-31 Flags 7 set if the result is zero
Flags z set if the result is zero N set gt?e rgsult Is negative
N set if the result is negative \(; not def!ne d
C represents carry out of the adder not define
\% set if signed arithmetic overflow has occurred Encoding 001001 SSSSS DDDDD
Register Usage Cycle 1 Destination register read SSSSS Source register number, 0-31
Cycle 3 Destination register write and flags are valid DDDDD Destination register number, 0-31
- X - - X Register Usage Cycle 1 Source register read & Destination register read
|ADDQMOD Add with quick data using modulo arithmetic | Cycle3 Destination register write and flags are valid
Syntax ADDQMOD n,Rn | BCLR Bit clear
Processors DSP
Syntax BCLR n,Rn
Instruction No. 63 X
Processors all variants
Description 32 bit unsigned or two’s complement integer add, where the source field is immediate -
data in the range 1-32, otherwise like ADD, except that the result bits may be Instruction No. 15
unmodified data if the corresponding modulo register bits are set. This allows circular . L L) .))
buffer management (for 2" size buffers), where the high bits of the modulo register are Description %ﬁ?f ﬂ;fcﬁ't.s'nr:rlﬁedf;'n:t(';_)g {egféegtiilfgi dﬂﬁ:igg{?;?—'gﬁergaﬁ; g:g source
set, and the low bits left clear. 16l Which 15 1 9 ; ! inati g
unaffected.
Encoding 111111 NNNAN oD Flags z set if destination register is now all zero
NNNNN Immediate data, 1-32, where 32 encodes as 0 9 . g
DDDDD Destinati ist ber. 0-31 N set from bit 31 of the result
estination register number, 0- c not defined
Flags z set if the result is zero v not defined
N set if the result is negative

26 October, 2002

N TN

CONFIDENTIAL ATART

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS

Page 27

Encoding 001111 NNNNN DDDDD Flags z set if the result is zero (operands equal)
NNNNN Bit select for the operation, 0-31 N set if the result is negative (source greater than destination operand)
DDDDD Destination register number, 0-31 C represents borrow out of the subtract
\% set if arithmetic overflow was generated by the subtract
Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid Encoding 011110 SSSSS DDDDD
SSSSS Source register number, 0-31
BSET Bit set | DDDDD Destination register number, 0-31
Register Usage Cycle 1 Source register read & Destination register read
Syntax BSET n,Rn Cycle3 Flags are valid
Processors all variants 3 N
|CMPQ Compare with quick data
Instruction No. 14
L - . R . . R X Syntax CMPQ n,Rn
Description Set the bit in the destination register selected by the immediate data in the source field,
which is in the range 0-31. The other bits of the destination register are unaffected. Processors all variants
Flags z set if the result is zero Instruction No. 31
N set if the result is negative
C not defined Description 32 bit compare with immediate data in the range -16 to +15.
\% reflects the state of the set bit before it was modified
Flags z set if the result is zero (operands equal)
Encoding 001110 NNNNN DDDDD N set if the result is negative (immediate data greater than destination
NNNNN Bit select for the operation, 0-31 operand)
DDDDD Destination register number, 0-31 C represents borrow out of the subtract
\% set if arithmetic overflow was generated by the subtract
Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid Encoding 011111 NNNNN DDDDD
NNNNN Immediate data, -16 to +15, two’s complement value
BTST Bit test | DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Syntax BTST n,Rn Cycle3 Flags are valid
Processors all variants N .
|DIV Unsigned divide
Instruction No. 13
. . . R R R - Syntax DIV Rn,Rn
Description Test the bit in the destination register selected by the immediate data in the source
field, which is in the range 0-31. Processors all variants
Flags z set if the selected bit is zero Instruction No. 21
N not defined
C not defined Description The 32 bit unsigned integer dividend in the destination register is divided by the 32 bit
\% not defined unsigned integer divisor in the source register, yielding a 32 bit unsigned integer
quotient as the result, like normal microprocessor division. The remainder is available,
Encoding 001101 NNNNN DDDDD and division may also be performed on 16.16 bit unsigned integers. Refer to the
NNNNN Bit select for the operation, 0-31 section on arithmetic functions.
DDDDD Destination register number, 0-31
Flags ZNCV unaffected
Register Usage Cycle 1 Destination register read
Cycle 3 Flags are valid Encoding 010101 SSSSS DDDDD
SSSSS Source register number, 0-31
CMP Compare | DDDDD Destination register number, 0-31
Register Usage Cycle 1 Source register read & Destination register read
Syntax CMP Rn,Rn Cycle 18 Destination register write
Processors all variants - _ - 3
| IMACN Signed integer multiply/accumulate, no write-back
Instruction No. 30
e R R . Syntax IMACN Rn,Rn
Description 32 bit compare, the source register contents are subtracted from the destination
register contents without the result being stored, but the flags reflect the result of the Processors all variants
comparison, which may therefore be used for equality testing and magnitude
comparison. Instruction No. 20

© 1992, 1993, 1994, 1995 ATARI Corp.

N TN

ATARI

CONFIDENTIAL 26 October, 2002

Page 28 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
Description 16 bit signed integer multiply and accumulate, like IMULT, except that the 32 bit Processors all variants
product is added to the result of the previous arithmetic operation, and the result is not
written back to the destination register. Intended to be used after IMULTN to give a Instruction No. 53
multiply/accumulate group.
Description Relative jump to the location given by the sum of the address of the next instruction
Flags ZNCV unaffected and the immediate data in the source field, which is signed and therefore in the range
+15 to -16 words. The condition codes encode as described above under conditional
Register Usage Cycle 1 Source register read & Destination register read jumps.
Encoding 010100 SSSSS DDDDD Flags ZNCV unaffected
SSSSS Source register number, 0-31 -
DDDDD Destination register number, 0-31 Encoding 110101 NNNNN Ccccc
NNNNN Jump offset in words, -16 to 15, two’'s complement value
Notes Refer to the section on Multiply and Accumulate instructions Cccce Condition code, described earlier
IMULT Signed integer multiply | Register Usage Cycle 1 Flags must be valid
Syntax IMULT Rn.Rn |JRE Extended range jump relative
Processors all variants Syntax JRE n
Instruction No. 17 Processors all variants
Description 16 bit signed integer multiply, the 32 bit result is the signed integer product of the Instruction No. 57
bottom 16 bits of each of the source and destination registers, and is written back to
the destination register. Description Unconditional relative jump to the location given by the sum of the address of the next
instruction and the immediate data in the combined source and destination fields,
Flags z set if the result is zero which is signed and therefore in the range +511 to -512 words. An offset of 0 is
N set if the result is negative decoded as NOP, however this op-code will always be treated as NOP unless the
C not defined enhanced bit is set (see NOP). The assembler should accept JR for this instruction
\% not defined and encode it appropriately.
Encoding 010001 SSSSS DDDDD Flags ZNCV unaffected
SSSSS Source register number, 0-31 -
DDDDD Destination register number, 0-31 Encoding 111001 NNNNNNNNNN -
NNNNNNNNNN Jump offset in words, -512 to 511, two’s complement value
Register Usage Cycle 1 Source register read & Destination register read -
Cycle3 Destination register write and flags are valid Register Usage none
IMULTN Signed integer multiply, no write-back | [JumpP Jump absolute
Syntax IMULTN Rn,Rn Syntax JUMP cc,(Rn)
Processors all variants Processors all variants
Instruction No. 18 Instruction No. 52

Description Like IMULT, but result is not written back to destination register. Intended to be used Description Jump to location pointed to by the source register, destination field is the condition
as the first of a multiply/accumulate group, as there are potential speed advantages in code, where the bits encode as described above under conditional jumps.
not writing back the result.
Flags ZNCV unaffected
Flags z set if the result is zero .
N set if the result is negative Encoding 110100 SsSsS CCCCC
c not defined SSSSS Source register number, 0-31
Vv not defined ccece Condition code, described earlier
Encoding 010010 SSSSS DDDDD Register Usage Cyclel Source register read and flags must be valid
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31 | LOAD Load Iong
Register Usage Cycle 1 Source register read & Destination register read Syntax LOAD (Rn),Rn
Notes Refer to the section on Multiply and Accumulate instructions Processors all variants
JR Jump relative | Instruction No. 41
Syntax IR cen Description 32 bit memory read. The source register contains a 32 bit byte address, which must be

long-word aligned. The destination register will have the data loaded into it.

26 October, 2002

A

ATARI

CONFIDENTIAL

TR

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS

Page 29

Flags ZNCV unaffected Description 8 bit memory read. The source register contains a 32 bit byte address. The destination
register will have the byte loaded into bits 0-7, the remainder of the register is set to
Encoding 101001 SSSSS DDDDD zero. This applies to external memory and some local RAM (refer to the discussion of
SSSSS Source register number, 0-31 each J-RISC processor), all other internal memory will perform a 32 bit read.
DDDDD Destination register number, 0-31
Flags ZNCV unaffected
Register Usage Cycle 1 Source register read
Cyclen Destination register write internal memory at cycle 3 or 4 Encoding 100111 SSSSS DDDDD
external memory subject to bus latency SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31
LOAD Load Iong, with indexed address | Register Usage Cycle 1 Source register read
Cycle n Destination register write internal memory at cycle 5 or 6
Syntax LOAD (R14+n),Rn external memory subject to bus latency
LOAD (R15+n),Rn
Processors all variants | LOADW Load word
Instruction No. 43, 44 Syntax LOADW (Rn),Rn
Description 32 bit memory read, as LOAD, except that the address is given by the sum of either Processors all variants
R14 or R15 and the immediate data in the source register field, in the range 1-32. The
offset is in long words, not in bytes, therefore a divide by four should be used on any Instruction No. 40
label arithmetic to give the offset. This is slower than normal LOAD operations due to
the two clock cycle overhead of computing the address. Description 16 bit memory read. The source register contains a 32 bit byte address, which must be
word aligned. The destination register will have the word loaded into bits 0-15, the
Flags ZNCV unaffected remainder of the register is set to zero. This applies to external memory and some
local RAM (refer to the discussion of each J-RISC processor), all other internal
Encoding 101011 NNNNN DDDDD memory will perform a 32 bit read.
101100 NNNNN DDDDD
NNNNN Address offset in long words, 1-32, where 32 encodes as 0 Flags ZNCV unaffected
DDDDD Destination register number, 0-31
Encoding 101000 SSSSS DDDDD
Register Usage Cycle 1 R14 or R15 register read SSSSS Source register number, 0-31
Cycle n Destination register write internal memory at cycle 3 or 4 DDDDD Destination register number, 0-31
external memory subject to bus latency
Register Usage Cycle 1 Source register read
LOAD Load |0ng, from reg ister with base offset address | Cyclen Destination register write internal memory at cycle 3or4
external memory subject to bus latency
Syntax LOAD (R14+Rn),Rn
LOAD (R15+Rn),Rn | LOADP Load phrase
Processors all variants Syntax LOADP (Rn),Rn
Instruction No. 58, 59 Processors GPU & RCPU
Description 32 bit memory load from the byte address given by the sum of R14 and the source Instruction No. 42
register (the address should be on a long-word boundary). Otherwise like instructions
43 and 44. Description 64 bit memory read. The source register contains a 32 bit byte address, which must be
phrase aligned. The destination register will have the low long-word loaded into it, the
Flags ZNCV unaffected high long-word is available in the high-half register. This applies to external memory
N only, internal memory will perform a 32 bit read.
Encoding 111010 SSSSS DDDDD
111011 SSSSS DDDDD Flags ZNCV unaffected
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31 Encoding 101010 SSSSS DDDDD
SSSSS Source register number, 0-31
Register Usage Cycle 1 R14 or R15 register read & Source register read DDDDD Destination register number, 0-31
Cyclen Destination register write internal memory at cycle 5 or 6
external memory subject to bus latency Register Usage Cycle 1 Source register read
Cycle n Destination register write, external memory subject to bus latency
LOADB Load byte | :
|MIRROR Mirror operand
Syntax LOADB (Rn),Rn
Syntax MIRROR Rn
Processors all variants
- Processors DSP
Instruction No. 39

© 1992, 1993, 1994, 1995 ATARI Corp.

N TN

ATARI

CONFIDENTIAL 26 October, 2002

Page 30

THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Instruction No.

48

Description

The register is mirrored bit-wise, i.e. bit 0 goes to bit 31, bit 1 to bit 30, bit 2 to bit 29
and so on. This is helpful for address generation in Fast Fourier Transform (FFT)
operations.

Flags

z set if the result is zero

N set if the result is negative
C not defined

\% not defined

Encoding

110000 00000 DDDDD

DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid
MMULT Matrix multiply
Syntax MMULT Rn,Rn
Processors all variants
Instruction No. 54

Description

Start systolic matrix element multiply, the source register is the location of the register
source matrix, the product is written into the destination register. Refer to the section
on matrix multiplies. The flags reflect the final multiply/accumulate operation.

Flags

z set if the result is zero

N set if the result is negative

C represents carry out of the adder
\% set if arithmetic overflow occurred

Encoding

110110 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage

Refer to the discussion of multiply/accumulate

Description Load the destination register with the address of the current instruction. The actual
value read from the PC is modified to take into account the effects of pipe-lining and
prefetch, to give the correct address. This is the only way for the GPU to read its own
PC.

Flags ZNCV unaffected

Encoding 110011 00000 DDDDD

DDDDD Destination register number, 0-31

Register Usage

Cycle 2 Destination register write

|MOVEFA Move from alternate register
Syntax MOVEFA Rn,Rn
Processors all variants
Instruction No. 37

Description 32 bit alternate register to register transfer, the source register lying in the other bank
of 32 registers.
Flags ZNCV unaffected
Encoding 100101 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31
Register Usage Cycle 1 Source register read
Cycle 2 Destination register write
MOVEI Move immediate
Syntax MOVEI n,Rn
Processors all variants
Instruction No. 38

MOVE Move register to register Description 32 bit register load with next 32 bits of instruction stream. The first word in the
instruction stream is the low word, the second the high word. This instruction always
Syntax MOVE RN.RN takes at least three clock cycles to complete, and is the sole exception to the 16 bit
! instruction size. Note that the operand word ordering is little-endian.
Processors all variants
Flags ZNCV unaffected
Instruction No. 34 -
Encoding 100110 00000 DDDDD
Description 32 bit register to register transfer. ININNNNNNNNNNNNNNN
ININNNNNNNNNNNNNNN
Flags ZNCV unaffected DDDDD Destination register number, 0-31
NNNNNNNNNNNNNNNN -+ Immediate data words as described above
Encoding 100010 SSSSS DDDDD
SSSSS Source register number, 0-31 Register Usage Cycle 4 Destination register write
DDDDD Destination register number, 0-31
- - |MOVEQ Move quick data
Register Usage Cycle 1 Source register read
Cycle 2 Destination register write Syntax MOVEQ n,Rn
MOVE Move program count to register Processors all variants
Syntax MOVE PC.Rn Instruction No. 35
Processors all variants Description 32 bit register load with immediate value in the range 0-31.
Instruction No. 51 Flags ZNCV unaffected

26 October, 2002

A

ATARI

CONFIDENTIAL

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS

Page 31

Encoding

100011 NNNNN DDDDD Encoding
NNNNN Immediate data, 0-31
DDDDD Destination register number, 0-31

010000 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 2 Destination register write Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid
MOVETA Move to alternate register |
|NEG Negate

Syntax MOVETA Rn,Rn

Syntax NEG Rn
Processors all variants

Processors all variants
Instruction No. 36

Instruction No. 8

32 bit two's complement negate, the result is the destination register contents
subtracted from zero, and is written back to the destination register. Note that

80000000h cannot be negated.

Description 32 bhit register to alternate register transfer, the destination register lying in the other

bank of 32 registers. Description
Flags ZNCV unaffected
Encoding 100100 SSSSS DDDDD Flags

SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage

Cycle 1 Source register read

z set if the result is zero

N set if the result is negative

C represents borrow out of the subtract
\ not defined

Cycle 2 Destination register write Encoding 001000 00000 DDDDD
DDDDD Destination register number, 0-31
MTOI Mantissa to integer |
& GILMEEE LY E8E Register Usage Cycle1l Destination register read
Syntax MTOI RN.RN Cycle 3 Destination register write and flags are valid
Processors all variants | NOP Null Operation
Instruction No. 55 Syntax NOP
Description Extract the mantissa and sign from the IEEE 32 bit floating-point number in the source Processors all variants
register, and create a signed integer in the destination. The most significant bit is bit
23, but it is sign extended. Instruction No. 57
Flags z set if the result is zero Description Do nothing O if the enhanced mode bit is set then this instruction can become
N set if the result is negative extended jump relative (JRE, see above). As long as the source and destination fields
C not defined are zero this is still decoded as NOP, and behaves exactly as before.
\Y not defined
Flags ZNCV unaffected
Encoding 110111 SSSSS DDDDD

SSSSS Source register number, 0-31 Encoding

111001 0000000000

DDDDD Destination register number, 0-31

Register Usage none
Register Usage Cycle 1 Source register read
Cycle 3 Destination register write and flags are valid | NORMI Normalisation integ er
MULT Multiply | Syntax NORMI Rn,Rn
Syntax MULT Rn,Rn Processors all variants
Processors all variants Instruction No. 56
Instruction No. 16 Description Gives the floating point normalisation integer for the value in the source register, which

should be an unsigned integer. The normalisation integer is the amount by which the

Description 16 bit unsigned integer multiply, the 32 bit result is the unsigned integer product of the source should be shifted right to normalise it as an IEEE 32 bit floating point value (the
bottom 16 bits of each of the source and destination registers, and is written back to normalisation integer can be negative), and is also the amount to be added to the
the destination register. exponent to account for the normalisation.
Flags z set if the result is zero Flags z set if the result is zero
N set if bit 31 of the result is one N set if the result is negative
C not defined C not defined
\% not defined \% not defined

N TN

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

CONFIDENTIAL

26 October, 2002

Page 32 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
Encoding 111000 SSSSS DDDDD Encoding 111111 00000 DDDDD
SSSSS Source register number, 0-31 DDDDD Destination register number, 0-31
DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Register Usage Cycle 1 Source register read Cycle 3 Destination register write
Cycle 3 Destination register write and flags are valid
Notes See the section on Pack and Unpack
NOT Logical NOT . -
g |RESMAC Multiply/accumulate result write
Syntax NOT Rn
Syntax RESMAC Rn
Processors all variants
Processors all variants
Instruction No. 12
Instruction No. 19

Description 32 bit logical invert, the result is the Boolean XOR of FFFFFFFF hex and the
destination register contents, and is written back to the destination register
Flags z set if the result is zero
N set if the result is negative
C not defined
\% not defined
Encoding 001100 00000 DDDDD

DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid
OR Logical OR
Syntax OR Rn,Rn
Processors all variants
Instruction No. 10

Description 32 bit logical or operation, the result is the Boolean OR of the source register contents
and the destination register contents, and is written back to the destination register.
Flags z set if the result is zero
N set if the result is negative
C not defined
\% not defined
Encoding 001010 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31
Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid
PACK Pack 16 bit CRY or RGB Pixel
Syntax PACK Rn
Processors GPU and RCPU

Instruction No.

63

Description Takes the current contents of the result register and writes them to the register
indicated. Intended to be used as the final instruction of a multiply/accumulate group.
Flags ZNCV unaffected
Encoding 010011 00000 DDDDD
DDDDD Destination register number, 0-31
Register Usage Cycle 3 Destination register write

Notes Refer to the section on Multiply and Accumulate instructions
| ROR Rotate right

Syntax ROR Rn,Rn

Processors all variants

Instruction No. 28

Description The value in the destination register is shifted right by the value in the source register
modulo thirty-two. This is effectively the same as a thirty-two bit rotate right by the
bottom five bits of the source register. You can use this instruction for rotate left by
complementing the value in the source register.

Flags z set if the result is zero
N set if the result is negative
C represents bit 31 of the un-shifted data
\Y not defined

Encoding 011100 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

|RORQ Rotate right by immediate count

Syntax RORQ n,Rn

Processors all variants

Instruction No. 29

Description Takes an unpacked pixel value and packs it into a 16 bit CRY or RGB pixel. The three L) . .)
fields, with five bit gaps between them are mapped onto the low sixteen bits, and the Description Immediate data version of ROR. Shift count may be in the range 1-32
top sixteen bits are set to zero. The reg1 field should be set to zero to differentiate this Flags 7 set if the result is zero
from UNPACK; N set if the result is negative
Flags ZNCV unaffected \(/2 Leopt)rg:ﬁ:;sdbit 31 of the un-shifted data
ctober, ATARI ,)) orp
26 October, 2002 CONFIDENTIAL ﬁw& © 1992, 1993, 1994, 1995 ATARI C

Midsummer Technical Reference Manual — Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 33

Encoding 011101 NNNNN DDDDD Flags
NNNNN Shift count, 1-32, where 32 encodes as 0, and has much the same effect
DDDDD Destination register number, 0-31

set if the result is zero

set if the result is negative
not defined

not defined

<0OZN

Register Usage Cycle 1 Destination register read

Cycle 3 Destination register write and flags are valid Encoding 100001 00000 DDDDD
DDDDD Destination register number, 0-31
SAT8 Saturate to elght bits | Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid
Syntax SAT8 Rn
Processors GPU & RCPU | SAT24 Saturate to twenty-four bits
Instruction No. 32 Syntax SAT24 Rn
Description Saturate the 32 bit signed integer operand value to an 8 bit unsigned integer. If it is Processors GPU and RCPU
negative it is set to zero, if it is greater than 000000FFh (255) it is set to that. This is
useful for computed intensities and so on, to counteract the effect of rounding errors. Instruction No. 62
Flags z set if the result is zero Description Saturate the 32 bit signed integer operand value to a 24 bit unsigned integer. If it is
N cleared negative it is set to zero, if it is greater than OOFFFFFFh (16,777,215) it is set to that.
C not defined This is particularly useful for computed intensities, to counteract the effect of rounding
\Y not defined errors.
Encoding 100000 00000 DDDDD Flags z set if the result is zero
DDDDD Destination register number, 0-31 N cleared
C not defined
Register Usage Cycle 1 Destination register read \Y not defined

Cycle 3 Destination register write and flags are valid

Encoding 111110 00000 DDDDD
SAT16 Saturate to sixteen bits | DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Syntax SAT16 Rn Cycle3 Destination register write and flags are valid
Processors GPU and RCPU . © 2
|SAT325 Saturate RESMAC value to thirty-two bit signed
Instruction No. 33
L . . - - ; . Syntax SAT32S Rn
Description Saturate the 32 bit signed integer operand value to a 16 bit unsigned integer. If it is
negative it is set to zero, if it is greater than 0000FFFFh (65,535) it is set to that. This is Processors DSP
useful for computed Z, et cetera, to counteract the effect of rounding errors.
Instruction No. 42

Flags z set if the result is zero
N cleared Description Saturate the 40 bit signed integer operand value to an 32 bit signed integer. This uses
C not defined the overflow bits from multiply/accumulate operations as the top eight bits of the
\% not defined source value. If the accumulated value is less than 80000000h it saturates to that, if it
is greater then 7FFFFFFFh it saturates to that.
Encoding 100001 00000 DDDDD
DDDDD Destination register number, 0-31 Flags z set if the result is zero
N set if the result is negative
Register Usage Cycle 1 Destination register read C not defined
Cycle 3 Destination register write and flags are valid \ not defined
i i i Encoding 101010 00000 DDDDD
SAT16S Saturate to sixteen signed bits | DODDD Destination register number, 0-31
Syntax SAT16S Rn Register Usage Cycle 1 Destination register read
PrOCEsSOrs DSP Cycle 3 Destination register write and flags are valid
Instruction No. 33 | SH Shift
Description Saturate the 32 bit signed integer operand value to a 16 bit signed integer. If it is less Syntax SH Rn,RN
than FFFF8000h it is set to that, if it is greater than 00007FFFh it is set to that. This is
useful for computed audio sample values, and so on, to counteract the effect of Processors all variants
rounding errors.
Instruction No. 23

N TN

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

CONFIDENTIAL 26 October, 2002

Page 34 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
Description This instruction performs a thirty-two bit shift either to the left or to the right as given by Register Usage Cycle 1 Destination register read
the shift value in the source register. A positive shift value causes a shift to the right, a Cycle 3 Destination register write and flags are valid
negative shift value gives a shift to the left.
Shift values greater than plus thirty-two or less than minus thirty-two give a result of - . . 5 5
zero as all the bits are shifted out. Zero is always shifted in, so you should use the SHA | SHLQ Shift left with immediate shift count
instruction if you require sign-extension of values shifted to the right.
Syntax SHLQ n,Rn
Flags z set if the result is zero Processors all variants
N set if the result is negative
C represents bit 0 of the un-shifted data for right shift, or bit 31 for left shift Instruction No. 24
\Y not defined
N Description 32 bit shift left by n positions, in the range 1-32. Otherwise like SH. (The shift value is
Encoding 010111 SSSSS DDDDD actually encoded as 32-n, this is handled by the assembler).
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31 Flags Z set if the result is zero
N set if the result is negative
Register Usage Cycle 1 Source register read & Destination register read c represents bit 31 of the un-shifted data
Cycle 3 Destination register write and flags are valid Vi not defined
SHA Shift arithmetic Encoding 011000 NNNNN DDDDD
NNNNN Immediate data, 1-32, where 32 encodes as 0
Syntax SHA Rn,RN DDDDD Destination register number, 0-31
Processors all variants Register Usage Cycle 1 Dest?nat@on reg?ster regd _
Cycle 3 Destination register write and flags are valid
Instruction No. 26
Description This instruction performs a thirty-two bit arithmetic shift either to the left or to the right | SHRQ Shift rng ht with immediate shift count
as given by the shift value in the source register. An arithmetic shift means that a shift Svntax SHRQ nRN
right is sign-extended, that is the value shifted in is the top bit of the value being V! !
shifted.)))))) Processors all variants
A positive shift value causes a sign-extended shift to the right, a negative shift value
gives a normal shift to the left. Shift values greater than plus thirty-two give either zero Instruction No. 25
or minus one depending on the sign of the value being shifted, shift values of less than
minus thirty-two give a result of zero. You should use the SH instruction if you do not Description As SHLQ but shift right, zero shifted in.
require sign-extension of values.
Flags z set if the result is zero
Flags z set if the result is zero N set if the result is negative
N set if the result is negative C represents bit 0 of the un-shifted data
C represents bit 0 of the un-shifted data for right shift, or bit 31 for left shift \% not defined
\Y not defined
Encoding 011001 NNNNN DDDDD
Encoding 011010 SSSSS DDDDD NNNNN Immediate data, 0-31
SSSSS Source register number, 0-31 DDDDD Destination register number, 0-31
DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Register Usage Cycle 1 Source register read & Destination register read Cycle 3 Destination register write and flags are valid
Cycle 3 Destination register write and flags are valid
- - — - - - |STORE Store long
|SHARQ Shift Arithmetic Right, with Immediate Shift Count |
Syntax STORE Rn,(Rn)
Syntax SHARQ n,Rn
Processors all variants
Processors all variants -
Instruction No. 47
Instruction No. 27
Description 32 bit memory write. The source register contains a 32 bit byte address, which must be
Description As SHRQ but arithmetic shift right, i.e. sign shifted in. Best mnemonic. long-word aligned. The destination register contains the data to be written.
Note that for all store instructions, the notion of source and destination register fields is
Flags z set if the result is zero the reverse of that used for all other instructions.
N set if the result is negative
C represents bit 0 of the un-shifted data Flags ZNCV unaffected
\Y not defined
Encoding 101111 SSSSS DDDDD
Encoding 011011 NNNNN DDDDD SSSSS Source register number, 0-31
NNNNN Shift count, 1-32, where 32 encodes as 0 DDDDD Destination register number, 0-31
DDDDD Destination register number, 0-31

26 October, 2002

N TN

CONFIDENTIAL ATART

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 35

Register Usage Cycle 1 Source register read & Destination register read
‘ e ? ? |STOREP Store phrase

STORE Store long, with indexed address | Syntax STOREP Rn,(Rn)
Syntax STORE Rn,(R14+n) Processors GPU and RCPU

STORE _ Rn(R15+n) Instruction No. 48
Processors all variants Description 64 bit memory write. The source register contains a 32 bit byte address, which must be
Instruction No 49. 50 phrase aligned. The destination register contains the low long-word of the data to be

i ' written, the high long-word is obtained from the high-half register. This applies to

Description 32 bit memory write, write as STORE, with address generation in the same manner as external memory only, internal memory will perform a 32 bit write.

the equivalent LOAD instructions. The destination register contains the data to be

written. Flags ZNCV unaffected
Flags ZNCV unaffected Encoding 110000 SSSSS DDDDD

SSSSS Source register number, 0-31

Encoding 110001 SSSSS DDDDD DDDDD Destination register number, 0-31

110010 SSSSS DDDDD -
NNNNN Address offset in long words, 1-32, where 32 encodes as 0 Register Usage
DDDDD Destination register number, 0-31

Cycle 1 Source register read & Destination register read

_ - [STOREW Store word
Register Usage Cycle 1 R14 or R15 register read
Cycle 2 Source register read Syntax STOREW Rn,(Rn)
STORE Store long, to register with base offset address | Processors all variants
Syntax STORE ~ Rn,(R14+Rn) Instruction No. 46
STORE Rn,(R15+Rn) Description 16 bit memory write. The source register contains a 32 bit byte address, which must be
Processors all variants word aligned. The destination register has the word to be written in bits 0-15. This
applies to external memory and some local RAM (refer to the discussion of each J-
Instruction No. 60, 61 RISC processor), all other internal memory will perform a 32 bit write.
Description 32 bit memory store to the byte address given by the sum of R14 and the destination Flags ZNCV unaffected
register (the address should be on a long-word boundary). Otherwise like instructions Encodi 101110 SSSSS DDDDD
49 and 50. The destination register contains the data to be written. ncoding .
SSSSS Source register number, 0-31
Flags ZNCV unaffected DDDDD Destination register number, 0-31
Encoding 111100 SSSSS DDDDD Register Usage Cycle 1 Source register read & Destination register read
111101 SSSSS DDDDD
SSSSS Sour_ce r_egister_number, 0-31 | SUB Subtract
DDDDD Destination register number, 0-31
Register Usage Cycle 1 R14 or R15 register read & Destination register read Syntax SuB Rn,Rn
Cycle 2 Source register read Processors all variants
STOREB Store byte | Instruction No. 4
Description 32 bit unsigned or two’'s complement integer subtract, result is the source register
Syntax STOREB Rn,(Rn) contents subtracted from the destination register contents, and is written to the
Processors all variants destination register. The carry flag represents borrow out of the subtract, and the zero
flag is set if the result is zero.
Instruction No. 45 - -
Flags z set if the result is zero
Description 8 bit memory write. The source register contains a 32 bit byte address. The destination N set if the result is negative
register has the byte to be written in bits 0-7. This applies to external memory and c represents borrow out of the subtract
some local RAM (refer to the discussion of each J-RISC processor), all other internal \ set if signed arithmetic overflow occurred
memory will perform a 32 bit write. A
Encoding 000100 SSSSS DDDDD
Flags ZNCV unaffected SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31
Encoding 101101 SSSSS DDDDD

SSSSS Source register number, 0-31 Register Usage
DDDDD Destination register number, 0-31

Register Usage

Cycle 1 Source register read & Destination register read

Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

N TN

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

CONFIDENTIAL 26 October, 2002

Page 36 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
. Encoding 100000 NNNNN DDDDD
SUBC Subtract with borrow NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31
Syntax SUBC Rn,Rn
Processors all variants Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid
Instruction No. 5
Description 32 bit unsigned or two’s complement integer subtract with borrow in according to the |SUBQT Subtract with immediate data’ transparent
carry flag, otherwise like SUB.
Syntax SUBQT n,Rn
Flags z set if the result is zero X
N set if the result is negative Processors all variants
C represents borrow out of the subtract Instruction No 7
\% set if signed arithmetic overflow occurred)
. Description 32 bit unsigned or two’s complement integer subtract, like SUBQ except that it is
Encoding 000101 SSSSS DDDDD transparent to the flags, which retain their previous values.
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31 Flags ZNCV unaffected
Register Usage Cycle 1 Source register read & Destination register read Encoding 000111 NNNNN DDDDD
Cycle 3 Destination register write and flags are valid NNNNN Immediate data, 1-32, where 32 encodes as 0
- - : DDDDD Destination register number, 0-31
|SUBQ Subtract with immediate data | - — -
Register Usage Cycle 1 Destination register read
Syntax SUBQ n,RN Cycle 3 Destination register write
Processors all variants |UNPACK Unpack 16 bit CRY or RGB Pixel
Instruction No. 6 Syntax UNPACK Rn
Description 32 bit two's complement integer subtract, where the source field is immediate data in
the range 1-32, otherwise like SUB. Processors GPU and RCPU
Flags z set if the result is zero Instruction No. 63
N set if the result is negative Description Takes a packed CRY or RGB 16 bit pixel value and unpacks it into a 32 bit integer.
c represents borrow out of the subtract The three fields are spread out with five bit gaps between them, and all other bits are
v set if signed arithmetic overflow occurred set to zero. The regl field should be set to one to differentiate this from PACK.
Encoding 000110 NNNNN DDDDD Flags ZNCV unaffected
NNNNN Immediate data, 1-32, where 32 encodes as 0
DDDDD Destination register number, 0-31 Encoding 111111 00001 DDDDD
DDDDD Destination register number, 0-31
Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write and flags are valid Register Usage Cycle 1 Destination register read
Cycle 3 Destination register write
|SUBQMOD Subtract with immediate data using modulo arithmetic | .
Notes See the section on Pack and Unpack
Syntax SUBQMOD n,Rn
Processors DSP |XOR Logical exclusive OR
Instruction No. 32 Syntax XOR Rn,RN
Description 32 bit two's complement integer subtract, where the source field is immediate data in Processors all variants
the range 1-32, otherwise like SUB, except that the result bits may be unmodified data
if the corresponding modulo register bits are set. This allows circular buffer Instruction No. 11
management (for 2" size buffers), where the high bits of the modulo register are set,
and the low bits left clear. Description 32 bit logical exclusive or, the result is the Boolean XOR of the source register
contents and the destination register contents, and is written back to the destination
Flags z set if the result is zero register.
N set if the result is negative
C represents borrow out of the subtract Flags z set if the result is zero
\% set if signed arithmetic overflow occurred N set if the result is negative
C not defined
\% not defined

26 October, 2002

N TN

CONFIDENTIAL ATART

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 37

Encoding 001011 SSSSS DDDDD
SSSSS Source register number, 0-31
DDDDD Destination register number, 0-31

Register Usage Cycle 1 Source register read & Destination register read
Cycle 3 Destination register write and flags are valid

Writing Fast J-RISC Programs

To get the most out of the J-RISC processor, it is important to avoid what are traditionally known as wait
states, but in a RISC context are usually called pipe-line stalls or just stalls. These are when the
instruction pipe-line has to pause until some system resource becomes available, and are generally to
control the use of limited hardware resources; or to protect the programmer from some out-of-order effect,
such as using a register before it is valid as the result of some previous operation.

The processor can execute one instruction per clock cycle in ideal circumstances, but it is very easy for
code to be subject to so many stalls that it only achieves around half this figure. It will be worthwhile for
programmers to tune the innermost loops of their code for maximum performance, and the rules given
here should help do that. A well written program can usually achieve an instruction throughput of around
three-quarters of the peak figure.

Pipe-line stalls usually occur either because an instruction would otherwise use some system resource,
such as a register or a flag, which is not valid; or it would use a piece of hardware that is currently fully
occupied, or active from an earlier operation, such as the external memory interface. This is because the
processor makes significant use of pipe-lining to improve performance.

The register bank is a source of stalls because it has only two read/write ports, so that two reads, a read
and a write, or two writes can occur in any given clock cycle. If a result is being written at the same time
as an instruction that requires two reads, then a stall will occur O unless the write register matches one of
the two read registers, in which case the write occurs and the write data is provided as if the read was
taking place. The instruction set list shows the register usage of all instructions.

Instructions dependant on the flags can also be subject to stalls, the flags are not valid until the clock
cycle in which the result is written back, so that if a ADD instruction is followed by a JUMP then a one
clock cycle stall will ensue, the JUMP executing in the clock cycle in which the result of the ADD is written
back.

Pipe-line stalls are incurred when:

o an instruction reads a register containing the result of the previous instruction, one clock cycle of
wait is incurred until the previous operation completes.

b an instruction uses the flags from the previous instruction, one clock cycle of wait is incurred until
the previous operation completes.

i an ALU result, memory load value or divide result has to be written back and neither register
operand of the instruction about to be executed matches, one clock cycle of wait is incurred to let
the data be written.

o two values are to be written back at once, one clock cycle of wait is incurred (this is unusual).

i an instruction attempts to use the result of a divide instruction before it is ready. Wait states are
inserted until the divide unit completes the divide, between one and sixteen wait states can be
incurred.

i a divide instruction is about to be executed and the previous one has not completed, between one
and sixteen wait states can be incurred.

i an instruction reads a register which is awaiting data from an incomplete memory read, this will be
no more than one clock cycle from internal memory, but can be several clock cycles from external
memory.

i a load or store instruction is about to be executed and the memory interface has not completed the
external bus cycle for the a previous external load or store (the wait logic cannot determine if the
transfer is internal or external before the instruction executes, so all loads and stores are held up if
there is an external transfer incomplete).

i after a store instruction with an indexed addressing mode (one clock cycle).

i after a JUMP or JR (three clock cycles if executing out of internal memory).

i if the next instruction has not been read, this will only occur when executing out of external memory.
i during a matrix multiply if the CPU accesses internal space.

The most common cause of pipe-line stalls is using a register which was altered by the previous
instruction. For example consider this code fragment:

1 add r3,r0 ; add offset to X

2 shrq 1,r0 ; apply scaling factor
3 add ro,ra ; add to base

4 add rs5,rl ; add offset to Y

5 shrq 1,r1 ; apply scaling factor
6 add ri, r6 add to base

Stalls will be incurred after instructions 1, 2, 4 and 5. If the code were laid out like this:

1 add r3,r0 ; add offset to X

2 add r5,ri ; add offset to Y

3 shrq 1,r0 ; apply scaling factor
4 shrq 1,r1 ; apply scaling factor
5 add r0,r4 ; add to base

6 add ri, r6 ; add to base

No stalls would occur. This is an example if interleaving, and this is a powerful technique for speeding up
your code. It is well worth the performance enhancement - 6 clock cycles instead of 10 in this example - to
ensure that your code is laid out like this. Obviously there is a considerable overhead in thinking this out,
but for loops that are executed many times it is well worth doing.

Graphics Processor - GPU

The Oberon Graphics Processor Subsystem contains one Jaguar RISC processor as described above
(this one is known as the GPU O Graphics Processing Unit) and the blitter, whose control registers are in
the GPU internal memory space. The GPU is a self-contained processing unit which runs in parallel with
the rest of the system, but which is able to access the main system bus. External memory is controlled by
a separate memory controller, which is not part the graphics processor system.

The graphics subsystem transfers data to or from external memory by becoming the master of the co-
processor bus. This bus has a 64 bit (phrase) data path, and a 24 bit address, with byte resolution. This
bus has multiple masters, and ownership of it is gained by a bus request/acknowledge system, which is
prioritised, i.e. ownership can be lost during a request (but not during a memory cycle). The graphics
subsystem contains two bus masters, the Graphics Processor and the Blitter.

The graphics subsystem also acts as a slave on the 10 bus. This bus normally has a 16 bit data path, and
allows external processors to access memory and registers within the graphics subsystem. As the data
path within the graphics subsystem is 32 bit, all external reads and writes must be in pairs.

The memory within the Graphics Subsystem appears to be part of the general machine address space,
both to the GPU and Blitter, and to external processors. The advantage to the GPU of having local
memory is both that it is faster, and that it does not require ownership of the system bus to be accessed.
All GPU transfers in the local space, to both memory and registers, can occur in parallel with activity on
the main (external) bus, and are therefore efficient in terms of system use.

This diagram shows the architecture and data paths of the graphics subsystem:

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 38 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
16/32-bit data 10 Bus F02220 [Al _FINC W Blitter A1 pointer increment fraction
Bus Slave Transfers | cpyy 4ccess to GPU F02224 | A2 BASE W__| Blitter A2 base
F02228 | A2_FLAGS W Blitter A2 flags
F0222C | A2_MASK W Blitter A2 mask
F02230 | A2_PIXEL RW | Blitter A2 pointer
GPU Bus Controller F02234 | A2_STEP W Blitter A2 step
Instruction Local RAM F02238 | BLIT_CMD W Blitter command
E’r‘]‘ff“t'o” 1K x 32 F0223C | BLIT COUNT w Blitter loop counters
F02240 BLIT SRCD W Blitter source data
. F02248 BLIT_DSTD W Blitter destination data
Dual-port 32-bit 32-bit data Local BUS I ter texture memory F02250 | BLIT DSTZ W | Blitter destination Z data
Register File 2K x 32 RAM F02258 BLIT SRCZ1 W Blitter source Z data 1
2K x 32 ROM F02260 | BLIT SRCZ2 W Blitter source Z data 2
| F02268 BLIT_PATD W Blitter pattern data
Blitter Registers F02270 BLIT_IINC W Blitter intensity increment
ALU Block F02274 | BLIT ZINC W | Blitter Z increment
F02278 BLIT_STOP W Blitter collision stop control
| F0227C BLIT 10 W Blitter intensity register O
GPU Gateway Blitter Control Logic F02280 BLIT |1 W Blitter intensity register 1
: F02284 BLIT 12 W Blitter intensity register 2
to main bus bus master F02288 | BLIT I3 W | Blitter intensity register 3
F0228C BLIT Z0 W Blitter Z register 0
F02290 BLIT Z1 W Blitter Z register 1
F02294 BLIT Z2 W Blitter Z register 2
F02298 BLIT Z3 W Blitter Z register 3
64-bit data Coprocessor bus F0229C | BLIT_FINNER W Fractional part of the inner counter and extended command
Bus Master Transfers F022A0 | BLIT IDELTA W Inner counter initial value delta
The three blocks at the lower right form the blitter. The control interface of the blitter is completely within F022A4 | A1 _XSD W Al X step delta value
the GPU space, but the blitter is an independent bus master to the GPU, i.e. it will start up and perform a F022A8 | A1 YSD W Al Y step delta value
blit completely independently from the GPU. The blitter texture memory is available to the GPU as 32 bit F022AC | BLIT ISTEP W Intensity step value
RAM (only long transfers are available), and may be used as general GPU RAM when not being used for F022B0 | BLIT ISD W Intensity step value delta
texture mapping. If texture operation is restric_:ted tp one 1K x 32 bank of this RAM, then the GPU may FO22B4 BLIT ZSTEP W Z step value
access the other 1K x 32 bank without affecting blitter performance. F022B8 BLIT ZSD W Z step value delta.
F022BC [BLIT_XO W Texture X address pointer 0
Memo ry Map F022C0 [BLIT_X1 W Texture X address pointer 1
F022C4 | BLIT_X2 W Texture X address pointer 2
F022C8 [BLIT_X3 W Texture X address pointer 3
The Graphics sub-system address space contains the following locations: F022CC [BLIT_YO W Texture Y address pointer 0
Addr. Name W Description F022D0 [BLIT_Y1 W Texture Y address pointer 1
F02000 | GPU_REGS RW_| GPU registers, sixty-four 32 bit locations F022D4 | BLIT_Y2 W__| Texture Y address pointer 2
F02100 GPU FLAGS RW | GPU flags F022D8 [BLIT_Y3 W Texture Y address pointer 3
F02104 GPU MTXC W GPU matrix control F022DC [BLIT_XINC W Texture X inner loop increment
F02108 GPU_MTXA W GPU matrix address F022E0 BLIT_XSTEP W Texture X outer loop step
F0210C_| GPU_BIGEND W__| GPU big /ittle endian control FO22E4 | BLIT_XSD W__| Texture X outer loop step delta
F02110 GPU PC RW | GPU program counter F022E8 BLIT_YINC W Texture Y inner loop increment
F02114 | GPU CTRL RW_| GPU operation control / status FO22EC | BLIT_YSTEP W__| Texture ¥ outer loop step
F02118 | GPU_HIDATA RW_| GPU bus interface high data FO22F0 | BLIT_YSD W__| Texture ¥ outer loop step delta
F0211C_| GPU_REMAIN R__| GPU division remainder FO22F4 | BLIT_TBASE W__| Texiure base address
F02120 GPU DMACNT W GPU DMA transfer count FO22F8 BLIT_IINCX W Alternate intensity increment register
F02124 | GPU_ DMACTL | W | GPU DMA control register FO22FC | AL MASK W__| Al window address mask.
FO2124 GPU DMASTAT R GPU DMA status F02300 A2_CLIP W A2 clipping window size
F02128 GPU DMAEA W GPU DMA external address F02304 Al_X W Alternate view of the Al X pixel pointer and its fractional part
F0212C | GPU DMAIA W GPU DMA internal address F02308 Al Y W Alternate view of the A1 Y pixel pointer and its fractional part
F02200 AL BASE W Blitter AL base F0230C | A2 X W Alternate view of A2 X pixel pointer
F02204 ALl FLAGS W Blitter AL flags F02310 A2_Y W Alternate view of A2 Y pixel pointer
F02208 AL CLIP W Blitter AL window size F02314 Al_XSTEP W Alternate view of the Al X step pixel pointer and its fraction
F0220C | ALl PIXEL RW | Blitter AL pointer F02318 Al_YSTEP W Alternate view of the A1 Y step pixel pointer and its fraction
F02210 AL STEP W Blitter AL step F0231C | BLIT_COLOR W Background color and data path control
FO2214 AL FSTEP W Blitter AL step fraction F02320 BLIT_TXTD W The texture data registers
F02218 AL FPIXEL RW | Blitter AL pointer fraction F02400 BLIT_TCLUT W Blitter texture CLUT - 16 words packed into 8 longs
F0221C | AL INC W Blitter AL pointer increment F03000 GPU_RAM RW | GPU local program and data RAM base, 1024 x 32 bits

26 October, 2002

CONFIDENTIAL

A

ATARI

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 39

F04000 TXT_RAM RW [Blitter texture RAM, 2048 x 32 bits

F06000 TXT_ROM RW | Blitter texture ROM, 2048 x 32 bits

To the GPU all these addresses appear as 32 bit locations, and all transfers to them should be long
transfers. The only exception to this is the block of 4K bytes of RAM at FO3000 (but not the texture RAM),
to which the GPU can perform byte and word transfers.

These locations may be accessed by all other processors for read or write as appropriate at the above
addresses, via the GPU slave access port, where they appear to the system as 16 bit IO space memory.
As they are all actually 32 bits, transfers must always be performed in pairs, in the order low address then
high address.

In addition, for high-speed write operations by 32 bit or 64 bit bus masters (especially for blit transfers),
they may be written to as 32 bit locations at an offset of plus 8000 hex from the addresses above. They
are not readable at these addresses. They are not accessible to the GPU itself at the plus 8000 hex
offset.

16 OVERFLOW_FLAG The ALU overflow flag, which is meaningful for two types of

operation: either it means the last add or subtract operation was

not representable for signed arithmetic, or it represents the state

of the bit set or cleared by the last bit set or clear operation

before the bit was set or cleared. Signed arithmetic overflow

occurs when:

» the sum of two positive numbers gives a negative result

« the sum of two negative numbers gives a positive result

* anegative number is subtracted from a positive number and
gives a negative result

e apositive number is subtracted from a negative number and
gives a positive result

Note that this bit appears in bit 18 of the RCPU and DSP.

Internal Registers

WARNING - when you write a value to this register, it may not appear to have changed in the following
two instructions, because of pipe-lining effects. If you are going to use the flags set by a STORE
instruction, or are changing one of the other bits such as the register bank, then ensure that there are two
NOPs after the STORE to this register.

This section describes the internal registers of the Graphics processor. Note that some of these are read Matrix Control Register F02104 Write only
or write only.

y- i i i . i This register controls the function of the MMULT instruction. Control bits are:
All GPU registers are 32 bit, and will require all 32 bits to be written. - —

Bit Name Description
- H 0-3 MWIDTH Matrix width, in the range 3 to 15

GPU Flags Register F02100 Read/Write :

9 9 4 MADDW When set, successive reads of the matrix held in memory are
This register provides status and control bit for several important GPU functions. Control bits are: separated by the matrix width. When clear, reads are from

. — consecutive locations.

Bit Name Description

0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic operation
was zero. Certain arithmetic instructions do not affect the flags, : . I
see above. 9 Matrix Address Register F02108 Write only

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borroyv out of the This register determines where, in local RAM, the matrix held in memory is.
adder/subtract, and reflects carry out of some shift operations, i __
but it is not defined after other arithmetic operations. Bit Name Description

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic 2-11 MTXADDR Matrix address.
operation was negative.

3 IMASK Interrupt mask, set by the interrupt control logic at the start of the
service routine, and is cleared by the interrupt service routine Data Organisation Register F0210C Write only
writing a 0. Writing a 1 to this location has no effect. . . . i . .

4-8 INT_ENAO-4 Interrupt enable bits for interrupts 0-4. The status of these bits is Thl|(s reg|sttehr controlsdtr:e p:]lySIlgatlj Iayo_LtJtt of tp'):)e'tﬂit:\ a}nd GP(;JhI_/ C:] rtlaglz_tters. Ifits current contents are
overridden by IMASK. Interrupts are allocated as follows: unknown, the Ssame data should be writien to bo € lowand hig ItS.

4 Blitter Bit Name Description

3 Object Processor 0 BIG_IO When this bit is set, 32 bit registers in the CPU I/O space are big-
2 Timing generator endian, i.e. the more significant 16 bits appear at the lower

1 DSP interrupt, the interrupt output from Puck address.

0 CPU interrupt 1 BIG_PIX When this bit is set the pixel organisation is big-endian. See the

9-13 INT_CLRO-4 Interrupt latch clear bits. These bits are used to clear the interrupt discussion elsewhere in this document.
latches, which may be read from the status register. Writing a 2 BIG_INSTR Normally, instructions are executed from a long-word in the order
zero to any of these bits leaves it unchanged, and the read value low word then high word. When this bit is set the execution
is always zero. ordering is reversed, i.e. high word then low word. However,

14 REGPAGE Switches from register bank 0 to register bank 1. This function is move immediate data remains little-endian, i.e. the data must
overridden by the IMASK flag, which forces register bank 0 to be always be in the order low word then high word in the instruction
used. stream.

15 DMAEN When DMAEN is set, GPU LOAD and STORE instructions 3 BIG_TROUBLE Under no circumstances set this bit. Data will be swapped in
perform external memory transfers at DMA priority, rather than unlikely ways just when you least expect it. Let me tell you what |
GPU priority. This has no effect on program data fetches, which think of big-endian organisation (continued on page 396)...
continue at GPU priority.

This bit must not be changed while an external memory cycle is

active. Note that these occur in the background, so be very GPU Program Counter F02110 Read/Write
careful about changing this flag dynamically, and do not modify it

in an interrupt service routine. The GPU program counter may be written whenever the GPU is idle (GPUGO is clear). This is normally

used by the CPU to govern where program execution will start when the GPUGO bit is set.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 40 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

The GPU program counter may be read at any time, and will give the address of the instruction currently
being executed. If the GPU reads it, this must be performed by the MOVE PC,Rn instruction, and not by
performing a load from it.

The GPU program counter must always be written to before setting the GPUGO control bit. When the
GPUGO bhit is cleared, the program counter value will be corrupted, as at this point the pre-fetch queue is
discarded.

17 SCORE_WRITE When this bit is set, score-board protection is enabled for register
writes. This means that if a slow write to a register, such as
external load or divide, is followed by a fast write to a register,
such as register move, that the writes will be executed in the
correct order. This bit should normally always be set, but may be

cleared for strict compatibility with Jaguar One.

18 PACK_RGB When this bit is set the pack and unpack instructions operate on

16 bit RGB data instead of CRY data.

GPU Control/Status Register F02114 Read/Write
This register governs the interface between the CPU and the GPU.

Bit Name Description

0 GPUGO This bit stops and starts the processor. Any processor may write

to this register to start it, however only the processor controlled
by this bit may clear it (unless single-stepping is enabled).

1 CPUINT Writing a 1 to this bit allows the GPU to interrupt the CPU. There
is no need for any acknowledge, and no need to clear the bit to

zero. Writing a zero has no effect. A value of zero is always read.

19 RESET Writing a one to this bits aborts all GPU operation instantly.
Everything is cleared down to its power on state, execution halts,
the GPU stops completely, and the processor sub-system must
be re-initialised from scratch. This bit is very powerful. Writing a
zero has no effect.

This bit must never be set in normal operation. It can have
catastrophic side effects on other processors, and is only

provided as a last resort for fatal situations.

2 GPUINTO Writing a 1 to this bit causes a GPU interrupt type 0. There is no
need for any acknowledge, and no need to clear the bit to zero.

Writing a zero has no effect. A value of zero is always read.

3 SINGLE_STEP When this bit is set GPU single-stepping is enabled. This means
that program execution will pause after each instruction, until a
SINGLE_GO command is issued.

The read status of this flag, SINGLE_STOP, indicates whether
the GPU has actually stopped, and should be polled before
issuing a further single step command. A one means the GPU is
awaiting a SINGLE_GO command.

4 SINGLE_GO Writing a one to this bit advances program execution by one
instruction when execution is paused in single-step mode.
Neither writing to this bit at any other time, nor writing a zero, will

have any effect. Zero is always read.

High Data Register F02118 Read/Write
This 32 bit register provides the high part of GPU phrase reads and writes. It is physically a single

register, and therefore a phrase read followed by a phrase write will write back the same high data unless
this register is modified.

Divide unit remainder F0211C Read only

This 32 bit register contains a value from which the remainder after a division may be calculated. Refer to
the section on the Divide Unit.

5 unused Write zero.

6-10 INT_LATO-4 Interrupt latches. The status of these bits indicate which interrupt
request latch is currently active, and the appropriate bit should be
cleared by the interrupt service routine, using the INT_CLR bits in
the flags register. Writing to these bits has no effect.

11 BUS_HOG When the GPU is executing code out of external RAM it will
normally give up the bus between program fetches, which should
allow the CPU to continue to run at the same time. Setting this bit
causes the GPU to attempt to hold on to the bus between
program fetches, which improves its execution speed, at the

expense of any lower priority device using the bus.

12-15 VERSION These bits allow the GPU version code to be read. Current
version codes are:

1 Pre-production test silicon (Jaguar One)

2 First production release (Jaguar One)

3 Pre-production test silicon (Midsummer)

Future variants of the GPU may contain additional features or
enhancements, and this value allows software to remain

Divide unit Control F0211C Write only
Bit Name Description
0 DIV_OFFSET If this bit is set, then the divide unit performs division of unsigned
16.16 bit numbers, otherwise 32 bit unsigned integer division is
performed.
GPU DMA Length Counter F02120 Write only

Writing to this counter sets up the length of the transfer and initiates it. The length is written in bytes but
must be a whole number of phrases, and the allowable range of values is between 8 (one phrase) and
32760 / 7FF8 hex. Only the GPU is allowed to write to this register if the GPU is running.

GPU DMA Control F02124 Write only
This register controls various aspects of the DMA transfer. It is static.

Bit Name Description

0 DMA_OUT Controls the direction of the DMA transfer. When set transfer is

from internal to external memory.

compatible with all versions. It is intended that future versions will 1 DMA_DMA ;\:igi?ytrgie?it(liDsl\/Tf\tlg\]/iIt)ravr\;rs]feer: gl(;cal:rtsh:tt:gisr}ghofgﬁsbeist he
be a superset of this GPU. o !
16 ENHANCED The bit has to be set to enable some of the enhanced normal GPY priority level.

functionality of Oberon. The following functions are enabled when

this bit is set: .

* additional condition codes are available to the JUMP and JR GPU DMA External Address F02128 Write Only
instructions))) This register gives the phrase aligned address of external DMA data. It is a counter, and so must be

+ the JRE op-code is enabled, using NOP with non-zero written before each DMA transfer. It wraps within a 4 Mbyte window. It must not be set to an address
register number fields. o within the GPU internal space, this will not work reliably, and may cause unpredictable system

« The bug related to two consecutive divides is fixed crashes.

26 October, 2002 CONFIDENTIAL mm‘ﬁw&~ © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 41

GPU DMA Internal Address F0212C Write only
This register gives the long aligned address of internal DMA data, it is also a counter like the external

address and so must be written to before each transfer. Valid addresses are in the range F02000 to
FO5FFC.

GPU DMA Status F02124 Read only

This read port allows the status of the DMA controller to be examined. This register is all zero when the
DMA transfer is complete, and this condition should be polled for. Bits are assigned as follows:

RISC Central Processor - RCPU

Bit Name Description

0 OCYCLE There is a cycle active on the external bus

1 OCYCLERD The read transfer part of an external cycle is active.
2 DMA_PEND There is a DMA transfer pending.

3-15 DMA_COUNT These correspond to the same bits in the DMA length counter,

which counts down as each phrase is transferred.

The RISC Central Processor is a Jaguar J-RISC processor intended to act as the CPU for the system, in
other words it should be the highest level of program flow in Midsummer. It replaces the function of the
68000 in Jaguar One, and gives considerably more processing power to the role. It is truly the central
processor of the system because of its power, the 68000 did not fill that function.

The system is still booted by the 68000, but once running it is intended that the RCPU takes over system
management.

The RCPU is intended to be the processor of choice for running code compiled in C, and it should be
possible to provide C libraries which largely hide the multiple processor nature of the system.

16-31 unused Will be zero when the DMA is finished.

Cache Controller

Overview

The RCPU contains an instruction cache, which can dramatically improve the speed of execution and
reduce the main bus usage of RCPU programs running from external memory. It works by automatically
storing instructions in fast local RAM as they are executed, so that when they are executed again they can
be fetched immediately from that RAM without waiting for, or slowing down, the external bus. This
benefits programs which contain loops (most programs!), as the second and subsequent passes through
the loop will be executed entirely from cache.

If the instruction cache controller is disabled the cache instead appears as two banks of local RAM
(detailed in the Memory Map section below) which can be used for general program or data storage.

The RCPU also contains a simple mechanism to help with stack operations. This allows the top 512 bytes
of data RAM to also be used as a rolling overlay for external RAM, so that the top of the stack can be held
in internal memory without severely restricting the stack size. This is not strictly a cache, as it relies on
software to copy data in and out of it, but it does allow significant enhancements in stack transfer
performance in certain circumstances. This is described in greater detail in the “RCPU Stack Cache Base
Pointer” section on page.8

What is a Cache?

A cache is a mechanism to store a copy of parts of slow external memory in fast local memory. It retains a
copy of data that is read from external memory, so that if that data is read again then the local copy can
be used, saving the time required to fetch it again from the slower memory. In the RCPU the cache stores
only program instruction data. Programs are a good candidate for caching as they usually contain loops.

A cache controller contains two blocks of RAM, called tag RAM and data RAM. The data RAM contains
the data that is being cached. In the RCPU these are instructions. The tag RAM identifies where in
external memory the data held in the data RAM comes from. To keep tag RAM small, the data RAM is
divided into lines, where each line has one tag entry. A line holds up to 16 instructions (that is 32 bytes or
4 phrases), and these always correspond to 32 consecutive bytes in external memory, on a 32 byte
boundary.

Although it would be nice if any line could correspond to any area in memory, this would require the
hardware to check all the tags to determine if there is a cache hit (a hit is when the data being fetched is
in the cache). The simplest solution to this is a direct mapped cache, where any location in external
memory can only be held in one cache location, so that any address only has to be compared against one
tag to see if the correct data is cached. A direct mapped cache has a problem if a loop is jumping back
and forth between two locations that correspond to the same cache line (this is known as thrashing),
because each will keep over-writing the other, and the stored cache data is never re-used. Therefore the
cache in the RCPU is two-way set associative. This means that any location in external memory can
map onto one of two locations in the data RAM. This means that two tags have to be checked to see if
there is a match. If either one of them matches, the cache returns the appropriate data to the instruction
fetch unit. This is a reasonable overhead.

The next issue to consider is how the data is written into the cache. When a cache miss occurs, the

cache unit will go and fetch an entire line from main memory. If one of the two locations on the data RAM
where this data could be stored is empty, than the line is placed there. However, if both of them are filled,
then the cache has a decision to make O what should it throw away? The usual answer is to throw away

© 1992, 1993, 1994, 1995 ATARI Corp.

ﬁw& CONFIDENTIAL 26 October, 2002

Page 42 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

the least recently filled line. This is normally a good solution, although it can clearly go wrong in the case
where three locations that map to the same lines are being cycled through. The RCPU cache supports
two algorithms: first in first out (FIFO), where the data that has been in the cache longest is discarded;
and random, where the data that is discarded is chosen randomly. You may want to experiment to see
which gives you better performance.

Cache Basics

Clearing the ENABLE_CACHE bit in the RCPU Cache Control register disables the cache, making the
memory regions RCPU_PRAM and RCPU_TRAM available as regular 32-bit memory. Setting this bit

allows these regions to be used by the cache controller, making them inaccessible to the programmer
(reading from this region with return indeterminate values, writing will have no effect).

When enabled, the controller uses RCPU_PRAM to store instructions, and RCPU_TRAM to remember
where they came from and if they are valid.

RCPU_TRAM will contain random data after reset, and must be cleared before the cache is enabled, so
that the controller knows that RCPU_PRAM doesn't contain any valid instructions.

In fact, the cache must be cleared on the following occasions:
1) Before the cache is enabled

2) After modifying code that could be cached, e.g. after :
a) Loading code from ROM or COROM
b) Moving code
c) Self-modifying code

To clear the cache:
1) Clear the ENABLE_CACHE bit (making RCPU_TRAM accessible to you)
2) Fillthe 64 longs in RCPU_TRAM with 0 (The DMA mechanism is the fastest way of doing this)

If this is the first clear after reset, the cache “ignore” range registers CACHE_ILWR, CACHE_IUPR must
be initialised. Any instruction fetched from the region:

CACHE_ILWR <= address < CACHE_IUPR
will not be cached. To disable this region, just set CACHE_ILWR=CACHE_IUPR.
Now that the cache has been cleared, it can be enabled by setting the ENABLE_CACHE bit.

All subsequent RCPU instruction fetches will be cached (except those from RCPU_RAM, which doesn't
need caching, and those within the ‘ignore’ area).

The CACHE_HIGH bit can be set at any time to increase the bus arbitration priority of cache fetches.

The next few sections explain in detail how the cache works. Although you can use the cache without this
detailed understanding, it will help you achieve maximum performance.

RCPU_CACHECTRL F18130 RW

RCPU_CACHEILO F18134 WO

RCPU_CACHEIHI F18138 WO

These registers define a region of memory as ‘un-cached’. Within this region the burst mechanism still
functions in order to improve program fetches, but nothing is written to the cache. This may be used to
improve performance in some cases by preventing a ‘one-off’ piece of in-line code from replacing a much-
executed loop in the cache. The region is defined as:

RCPU_CACHEILO <= burst_address < RCPU_CACHEIHI

The register-values must be cache-line-aligned, i.e. A4..A0 are zero, corresponding to the 32 bytes in a
cache line. To disable the ignore mechanism, set RCPU_CACHEILO=RCPU_CACHEIHI.

Warning: Trying to execute code from the ignored region whilst ‘EN_IMMED’ and ‘EN_LINE’ are clear will
cause the RCPU to hang.

Cache Organisation

The cache is divided into ‘lines’. Each line is 32 bytes long (i.e. it can contain up to 16 instructions) and is
always filled in a single burst. The lines are paired into 2-line ‘sets’, and there are 64 sets in total (the
pairing is explained under ‘Thrashing’ below).

These sets map onto main memory as a 2K block, repeated throughout memory:

Addr Set

000000 set0

000020 setl

000040 set2

0007EO0 set63

000800 set0

000820 setl

000840 set2

000FEO [set63

001000 set0

001020 setl

001040 set2

(and

S0 on)

Thus each set maps onto many different memory locations, each 2K apart. When the RCPU executes an
instruction from a location that is not in the cache (a ‘cache miss’), the cache fills the entire set that maps

Bit Name Description onto that location. Each set also has a ‘valid bit’ and an ‘address tag’ which remembers which address

0 ENABLE Clear to disable cache controller, allowing RCPU_PRAM and that sgt was filled from, or indeed whether it has ever been filled at all. An example will help make this
RCPU_TRAM to be used as general-purpose RAM. clear:
Set to enable cache controller, which uses these RAMs for storage. Your code jumps to location 0x000800, which happens to be in DRAM. The RCPU requests an instruction
Cache controller’s internal ‘enable’ state cannot change during a from this address, which maps to cache set0 (see above table). The cache checks the tag for set0
pending request or cache burst - this bit can be read to determine against the requested address. But the tag is either ‘invalid’ (showing that this set has never been filled),
the internal state. or shows that the set contains data from some other address (perhaps 0x000000). This is a cache miss,

1 EN_IMMED When cache is disabled, this has no effect. so the cache requests the external bus and bursts 4 phrases in from DRAM. It also updates the setO tag
When cache is enabled, set to allow ‘immediate’ cache burst hits. to ‘valid, 0x000800'.
(Explained under ‘Cache Performance’ below) Your code then continues to execute, fetching the instructions which formed the rest of the burst, and
Do NOT change this bit ‘on the fly'. therefore can quickly be supplied from the cache. When location 0x000820 is reached, the same process
It will normally be set ‘'TRUE’ at start-up then left unchanged. will oceur for setl.

2 EN_LINE Similar to EN_IMMED, but enables ‘line’ cache burst hits. L . .

; Whe se cahe Ilhes ar peromed o DA prort e oty o a1 8070 8 he pocesso

4 RANDOM Determines line-replacement algorithm on cache-misses. Clear for Y P]_ o y) '
FIFO, set for RANDOM. The tags for each set are held in longs in RCPU_TRAM, organised as follows:

5 BUS_HOLD If this bit is set, then the 68000 can never have the bus at its normal Bit Name Description
priority. This will significantly enhance cache performance when the 0-12 TAGO Base address bits A23-A11 of the instructions stored in Line0
;ystem is idle a"s tre t;)us Ie}t‘enlfi:y will be shgbstant|ally rﬁdué:ggdoofther 13-25 | TAGL Base address bits A23-A11 of the instructions stored in Linel
oo

ning ything P P - 27 VALID1 True if Tagl and Linel are valid
5-31 unused Write zero.
26 October, 2002 CONFIDENTIAL mm‘ﬁ & © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 43

28 LRU Indicates which line is ‘least-recently-used’ and will be replaced

on next cache-miss at this set.

29-31 unused Unused by cache.

Thrashing

The RCPU cache is properly defined as ‘a 2-way set-associative instruction cache with LRU
replacement’. This jargon is an attempt to minimise a nasty cache phenomenon called thrashing.

Imagine that you have a 3D-transform engine running on the RCPU from external DRAM, with much of
the code written in ‘C’. You clear and enable the cache then jump to the code...

The loop of code processes each point in turn, calling a subroutine to do the actual transform. Normally,
turning on the cache will have a huge beneficial effect on this code. After the first time through the loop,
both the loop and the subroutine will be in the cache, and subsequent iterations will execute at full speed.

However, if the loop and the subroutine are (some multiple of) 2K apart, they will map onto the same
cache set(s). Thus when the loop calls the subroutine, the subroutine replaces it in the cache. When the
subroutine then returns to the loop, the loop replaces it in the cache. The cache is thrashing, and isn’t
helping at all.

This is not quite true, because the cache is very efficient at reading instructions (because it bursts
phrases at top speed without relinquishing the bus), so its still better than nothing at all. However, this is
obviously an undesirable situation. Especially in ‘C’ it is hard to keep track of the exact memory-position
of routines, and therefore hard to avoid this problem in software.

Hyper-observant readers will have noticed that the cache has 64 sets of 32 bytes each, mapping over a
2K byte area, but when disabled the cache RAM provides 4K bytes of storage. This factor of two
discrepancy is because each set consists of two lines.

The two lines both map onto the same 32-byte region (aliased every 2K throughout memory). Whenever
a cache miss happens at that set, the cache fills whichever line which was |east-recently-used, leaving the
other line alone. The ‘LRU’ bit field in the tag tracks this. In the example above, the ‘main loop’ miss
would fill one line, and the ‘subroutine’ miss would fill the other. Execution would then continue entirely
from cache.

This ‘2-way set-associativity’ means that 3 or more frequently-visited locations must map onto the same
set before thrashing occurs. This is unlikely in the critical inner-loops of most algorithms.

Cache Performance

In general, the cache tends to accentuate the characteristics of the RCPU prefetcher and RISC pipeline,
i.e. contiguous, in-line code will execute fast, but jumps hurt performance.

Speed

Thrashing (see above) has the single biggest impact on cache-performance, wasting both bus bandwidth
and slowing-down the RCPU. Large inner-loops (which exceed 4Kbytes in length) or multiple subroutine
calls in inner-loops are the most likely causes.

The cache controller has two mechanisms which optimise processor performance on cache misses:

1. When burst-filling a line, the burst starts from the actual (phrase) address of the wanted instruction,
wrapping-around as necessary to complete the set. For example, an instruction-fetch from 0x00001C will
fetch phrases in the order:

0x00001C
0x000000
0x000008
0x000010

This speeds execution when the processor jumps into the middle of a cache line, as the processor can
continue execution as soon as the first phrase is fetched.

2. During a line-fill, the cache (including the current line) is unavailable to the processor. Burst-fills from
ROM especially can take a considerable time to complete, during which the prefetch queue can empty,
stalling the processor. To avoid wasting these cycles, a ‘Line FIFO' in the cache controller containing 2
longs effectively extends the prefetch queue during bursting. As longs are burst into the cache, they are
passed straight to the prefetcher if it is not full, otherwise they are buffered into the FIFO.

Thus as the prefetch queue empties, it can receive the next long from one of three sources:

Immediate hit: Straight from external memory as it is read-in during a burst.
Line hit: From FIFO during a burst. Prefetcher was full but has now emptied.
Cache hit: From cache. Long is already in cache, and no burst is in progress.

Space

If possible, routines should be aligned on line-start (4-phrase) boundaries. If a routine starts at the end of
a cache-line (e.g. at address 0X00001E) then all the previous bytes in the line may be wasted, despite
having taken time to read in and cache space to store. Compiler-writers might like to provide a command-
line flag which forces line-alignment of subroutines (at the cost of increased code-size).

Routines which end at the start of a cache-line (e.g. at address 0x000022) are similarly wasteful, as the
whole of the rest of the cache-line may be wasted.

Cache-efficiency ‘super-sleuths’ can examine the contents of the cache at any time by disabling and
dumping the contents of RCPU_TRAM. The ‘LRU’ bits for each set indicate the line which will be replaced
next.

RCPU Memory Map

The RCPU sub-system address space contains the following locations:

Addr Name riw Description
F18000 RCPU_REGS RW RCPU registers, sixty-four 32 bit locations
F18100 RCPU_FLAGS RW RCPU flags

F18104 RCPU_MTXC RCPU matrix control

F18108 RCPU_MTXA RCPU matrix address

F1810C RCPU_BIGEND RCPU big / little endian control

F18110 RCPU_PC RCPU program counter

F18114 RCPU_CTRL RCPU operation control / status

F1811C RCPU_REMAIN RCPU division remainder

F18120 RCPU_DMACNT RCPU DMA transfer count

F18124 RCPU_DMACTL RCPU DMA control register

F18124 RCPU_DMASTAT RCPU DMA status

F18128 RCPU_DMAEA RCPU DMA external address

W
W
RW
RW
F18118 RCPU_HIDATA RW RCPU bus interface high data
R
W
W
R
W
W

F1812C RCPU_DMAIA RCPU DMA internal address

F1E000 RCPU_RAM RW RCPU local data RAM base, 256 x 32 bits
F1E800 RCPU TRAM RW RCPU cache tag RAM base, 64 x 32 bits
F1F000 RCPU PRAM RW RCPU cache data RAM base, 1024 x 32 bits

To the RCPU all these addresses appear as 32 bit locations, and all transfers to them should be long
transfers. The sole exception is the block of 1K bytes of RAM at F1IE000, to which the RCPU can perform
byte and word transfer.

These locations may be accessed by all other processors for read or write as appropriate at the above
addresses, via the RCPU slave access port, where they appear to the system as 16 bit IO space memory.
As they are all actually 32 bits, transfers must always be performed in pairs, in the order low address then
high address.

In addition, for high-speed write operations by 32 bit or 64 bit bus masters (especially for blit transfers),
they may be written to as 32 bit locations at an offset of plus 8000 hex from the addresses above. They
are not readable at these addresses. They are not accessible to the RCPU at the plus 8000 hex offset.

Interrupts

There are six interrupts sources within the RCPU. These are allocated as follows:

UART interrupt

Video interrupt

Object processor CPU interrupt
GPU to CPU interrupt

Puck interrupt

CPU interrupt

OFRr NWbhO

Interrupts 2 to 4 are the same interrupt signals connected to the 68000 interrupt controller in Oberon.
They are separately available here, for local use or masking. The 68000 interrupt controller does not
control these - if one of these interrupts is enabled at source, then all you have to do is to enable them
within the RCPU to get the interrupt.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 44 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Internal Registers

This section describes the internal registers of the Graphics processor. Note that some of these are read
or write only.

All RCPU registers are 32 bit, and will require all 32 bits to be written.

RCPU Flags Register F18100 Read/Write

This register provides status and control bit for several important RCPU functions. Control bits are:

19 EXT_MULT Enable extended multiplier. Normally multiplies are 16x16 to give
a 32-bit result. When this bit is set, multiplies are 16x32, where
the destination is the 32-bit operand, giving a 48 bit result. This
function does not work with matrix multiplies.

The ENHANCED bit must be set for this function to work.

20 EXT_MHIGH This bit selects the high 32 bits of the multiplier result when

performing an extended multiply. The bottom 16 bits are ignored.

Bit Name Description

0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic operation
was zero. Certain arithmetic instructions do not affect the flags,
see above.

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borrow out of the
adder/subtract, and reflects carry out of some shift operations,

but it is not defined after other arithmetic operations.

21 EXT_MSAT This bit select the bottom 32 bits of the multiplier result, but
saturates them as appropriate. If overflow has occurred into the
top 16 bits, then the result is the largest (or smallest for signed
negative underflow) representable integer. This works for both
signed and unsigned multiplies.

signed multiplies:

result > 7FFFFFFF, result set to 7FFFFFFF

result < 80000000, result set to 80000000

unsigned multiplies:

result > FFFFFFFF, result set to FFFFFFFF

If this bit is set, then EXT_MHIGH is ignored.

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic

operation was negative.

3 IMASK Interrupt mask, set by the interrupt control logic at the start of the
service routine, and is cleared by the interrupt service routine

writing a 0. Writing a 1 to this location has no effect.

4-8 INT_ENAO-4 Interrupt enable bits for interrupts 0-4. The status of these bits is
overridden by IMASK. Interrupts are allocated as follows:

UART

Blitter

Object Processor

Timing generator

DSP interrupt, the interrupt output from Puck

CPU interrupt

oOFRrNWA~OG

WARNING - when you write a value to this register, it may not appear to have changed in the following
two instructions, because of pipe-lining effects. If you are going to use the flags set by a STORE
instruction, or are changing one of the other bits such as the register bank, then ensure that there are two
NOPs after the STORE to this register.

Matrix Control Register F18104 Write only
This register controls the function of the MMULT instruction. Control bits are:

Bit Name Description

0-3 MWIDTH Matrix width, in the range 3 to 15

9-13 INT_CLRO-4 Interrupt latch clear bits. These bits are used to clear the interrupt
latches, which may be read from the status register. Writing a
zero to any of these bits leaves it unchanged, and the read value

is always zero.

14 REGPAGE Switches from register bank 0 to register bank 1. This function is
overridden by the IMASK flag, which forces register bank 0 to be

used.

15 DMAEN When DMAEN is set, RCPU LOAD and STORE instructions
perform external memory transfers at DMA priority, rather than
RCPU priority. This has no effect on program data fetches, which
continue at RCPU priority.

This bit must not be changed while an external memory cycle is
active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it
in an interrupt service routine.

4 MADDW When set, successive reads of the matrix held in memory are
separated by the matrix width. When clear, reads are from
consecutive locations.

Matrix Address Register F18108 Write only

This register determines where, in local RAM, the matrix held in memory is.

Bit Name Description

2-12 MTXADDR Matrix address, in the range F1EQ00 - F1FFFC.

16 INT_ENAS5 Interrupt enable bit for interrupt 5. Function as bits 4-8.

Data Organisation Register F1810C Write only

This register controls the physical layout of pixel data and RCPU /O registers. If its current contents are
unknown, the same data should be written to both the low and high 16 bits.

17 INT_CLR5 Interrupt latch clear bit for interrupt 5. Function as bits 9-13.

Bit Name Description

18 OVERFLOW_FLAG The ALU overflow flag, which is meaningful for two types of

operation: either it means the last add or subtract operation was

not representable for signed arithmetic, or it represents the state

of the bit set or cleared by the last bit set or clear operation

before the bit was set or cleared. Signed arithmetic overflow

occurs when:

« the sum of two positive numbers gives a negative result

« the sum of two negative numbers gives a positive result

* anegative number is subtracted from a positive number and
gives a negative result

« apositive number is subtracted from a negative number and
gives a positive result

Note that this bit appears in bit 16 of the GPU.

0 BIG_IO When this bit is set, 32 bit registers in the CPU I/O space are big-
endian, i.e. the more significant 16 bits appear at the lower
address.

1 BIG_PIX When this bit is set the pixel organisation is big-endian. See the

discussion elsewhere in this document.

2 BIG_INSTR Normally, instructions are executed from a long-word in the order
low word then high word. When this bit is set the execution
ordering is reversed, i.e. high word then low word. However,
move immediate data remains little-endian, i.e. the data must
always be in the order low word then high word in the instruction
stream.

3 BIG_TROUBLE Under no circumstances set this bit. Data will be swapped in
unlikely ways just when you least expect it. Let me tell you what |

think of big-endian organisation (continued on page 396)...

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 45

RCPU Program Counter F18110 Read/Write 17 ENHANCED The bit has to be set to enable some of the enhanced
functionality of the RCPU. The following functions are enabled
The RCPU program counter may be written whenever the RCPU s idle (RCPUGO is clear). This is when this bit is set:
normally used by the CPU to govern where program execution will start when the RCPUGO bit is set. « additional condition codes are available to the JUMP and JR
The RCPU program counter may be read at any time, and will give the address of the instruction currently instructions)))
being executed. If the RCPU reads it, this must be performed by the MOVE PC,Rn instruction, and not by * the JRE op-code is enabled, using NOP with non-zero
performing a load from it. register number fields. . » o
The RCPU program counter must always be written to before setting the RCPUGO control bit. When the * The bug related to two consecunvg d|y|des Is fixed
RCPUGO bit is cleared, the program counter value will be corrupted, as at this point the pre-fetch queue - __the goft_/vgre controlied reset functhn 5 enabled -
is discarded. ’ ’ 18 SCORE_WRITE When this bit is set, score-board protection is enabled for register
writes. This means that if a slow write to a register, such as
= . external load or divide, is followed by a fast write to a register,
RCPU Control/Status Register F18114 Read/Write such as register move, that the writes will be executed in the
This register governs the interface between the CPU and the RCPU. gﬁ;ﬁg&?{gi&r;? L:sokr)rztpzr:i(t))ﬁ:?yr;;g]nﬂ)g/ivrvgﬁek.)e set, but may be
Bit Name Description 19 PACK_RGB When this bit is set the pack and unpack instructions operate on
0 RCPUGO This bit stops and starts the processor. Any processor may write 16 bit RGB data instead of CRY data.
to this register to start it, however only the processor controlled 20 RESET Writing a one to this bits aborts all RCPU operation instantly if the
by this bit may clear it (unless single-stepping is enabled). enhanced bit is set. Everything is cleared down to its power on
1 CPUINT Writing a 1 to this bit allows the RCPU to interrupt the CPU. state, execution halts, the RCPU stops completely, and the
There is no need for any acknowledge, and no need to clear the processor sub-system must be re-initialised from scratch. This bit
bit to zero. Writing a zero has no effect. A value of zero is always is very powerful. Writing a zero has no effect.
read. This bit must never be set in normal operation. It can have
2 RCPUINTO Writing a 1 to this bit causes a RCPU interrupt type 0. There is no catastrophic side effects on other processors, and is only
need for any acknowledge, and no need to clear the bit to zero. provided as a last resort for fatal situations.
Writing a zero has no effect. A value of zero is always read.
3 SINGLE_STEP When this bit is set RCPU single-stepping is enabled. This : . .
means that program execution will pause after each instruction, High Data Register F18118 Read/Write
until a SINGLE_GO command is issued. . . . i . i . i .
The read status of this flag, SINGLE_STOP, indicates whether Th|_s 32 bit register provides the high part of RCPU phrase re{ids a}nd vyntes. Itis physmally a single
the RCPU has actually stopped, and should be polled before re_glsterl, andl therefgre a phrase read followed by a phrase write will write back the same high data unless
issuing a further single step command. A one means the RCPU this register is modified.
is awaiting a SINGLE_GO command. o : .
4 SINGLE_GO Writing a one to this bit advances program execution by one Divide unit remainder F1811C Read only
instruction when execution is paused in single-step mode. .)
Neither writing to this bit at any other time, nor writing a zero, will This 32 p|t register clohtalns ;value from which the remainder after a division may be calculated. Refer to
have any effect. Zero is always read. the section on the Divide Unit.
5 unused Write zero. . . .
6-10 INT_LATO-4 Interrupt latches. The status of these bits indicate which interrupt Divide unit Control F1811C Write only
request latch is currently active, and the appropriate bit should be i —
cleared by the interrupt service routine, using the INT_CLR bits in Bit Name Description
the flags register. Writing to these bits has no effect. 0 DIV_OFFSET If this bit is set, then the divide unit performs division of unsigned
11 BUS_HOG When the RCPU is executing code out of external RAM it will 16.16 bit numbers, otherwise 32 bit unsigned integer division is
normally give up the bus between program fetches, which should performed.
allow the CPU to continue to run at the same time. Setting this bit
causes the RCPU to attempt to hold on to the bus between .
program fetches, which improves its execution speed, at the RCPU DMA Length Counter F18120 Write only

expense of any lower priority device using the bus.

12-15 VERSION These bits allow the RCPU version code to be read. Current
version codes are:

1 Pre-production test silicon (Jaguar One)

2 First production release (Jaguar One)

3 Pre-production test silicon (Midsummer)

Future variants of the RCPU may contain additional features or
enhancements, and this value allows software to remain
compatible with all versions. It is intended that future versions will
be a superset of this RCPU.

Writing to this counter sets up the length of the transfer and initiates it. The length is written in bytes but
must be a whole number of phrases, and the allowable range of values is between 8 (one phrase) and
32760 / 7FF8 hex. Only the RCPU is allowed to write to this register if the RCPU is running.

16 INT_LATS Interrupt latch for interrupt 5. Has the same function for interrupt

5 as bits 6-10 have for interrupts 0-4.

RCPU DMA Control F18124 Write only
This register controls various aspects of the DMA transfer. It is static.

Bit Name Description

0 DMA_OUT Controls the direction of the DMA transfer. When set transfer is

from internal to external memory.

1 DMA_DMA When this bit is set the transfer occurs at the high RCPU bus
priority level (DMA level), when clear the transfer occurs at the

normal RCPU priority level.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 46 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

RCPU DMA External Address F18128 Write only

This register gives the phrase aligned address of external DMA data. It is a counter, and so must be
written before each DMA transfer. It wraps within a 4 Mbyte window. It must not be set to an address
within the RCPU internal space, this will not work reliably, and may cause unpredictable system
crashes.

RCPU DMA Internal Address F1812C Write only

This register gives the long aligned address of internal DMA data, it is also a counter like the external
address and so must be written to before each transfer. Valid addresses are in the range F18000 to
FO5FFC.

RCPU DMA Status F18124 Read only

This read port allows the status of the DMA controller to be examined. This register is all zero when the
DMA transfer is complete, and this condition should be polled for. Bits are assigned as follows:

18 PARITY_ERROR This error flag indicates that received data has a parity error. The
UART will cease operation until the error is cleared. This bit is

read only.

19-21 BYTES_IN_BUF This value indicates how many bytes are present in the UART
receive data buffer. Valid values are 0-4. Even if the receiver is in
byte mode (BYTE_INT set), further values will be added to the

buffer until the long overflows. This value is read only.

22-24 BYTES_LAST_READ This value indicates how many bytes were present the last time
the receive data buffer was read. As it is not possible to read the
receive data buffer and the BYTES_IN_BUF value atomically, the
counter is latched whenever a read occurs and the value stored

Bit Name Description

0 OCYCLE There is a cycle active on the external bus

1 OCYCLERD The read transfer part of an external cycle is active.

2 DMA_PEND There is a DMA transfer pending.

3-15 DMA_COUNT These correspond to the same bits in the DMA length counter,
which counts down as each phrase is transferred.

here.
25 RX_INT_FLAG The current interrupt was caused by the receiver. This bit is read-
only.
26 TX_INT_FLAG The current interrupt was caused by the transmitter. This bit is
read-only.
RCPU UART Data F18140 Read/write

This long location contains a long write-only transmit data buffer, and a long read-only receive data buffer.
For a full discussion of the UART, refer to the section on it below. These buffers are big-endian, this
means that the byte order of transmission or reception is as follows:

16-31 unused Will be zero when the DMA is finished.

Bits Order

RCPU Extended UART Control F1813C Read/write

This register supplements the ASICTRL register at F10032, and that register must also be initialised
before the UART is used. For a full discussion of the UART, refer to the section on it below.

24-31 first byte

16-23 second byte

8-15 third byte

0-7 fourth byte

Bit Name Description

0 ERROR When read, this bit indicates that one of the error bits below is
set. Writing a one to this bit clears all the error flags. Writing a
zero has no effect.

1 BYTE_INT When this bit is set, the RCPU is interrupted after each byte is
received. When this bit is clear, it is interrupted when four bytes

have been received.

2 RX_INT When this bit is set, receiver interrupts are enabled. An interrupt
is generated at the rate determined by BYTE_INT. The status of

this bit is reflected by a read.

3 TX_INT When this bit is set, transmitter interrupts are enabled. An
interrupt is generated whenever the transmit buffer is empty. The
TX_BYTE bit below controls whether this is after one or four

bytes. The status of this bit is reflected by a read.

4 NOPAR When this bit is set, the receiver no longer expects to receive a
parity bit. This allows the standard 8-bit, no parity, one stop bit
format to be received. It has no effect ion the transmitter, so to
transmit this format you should ensure the transmitted parity bit
corresponds to a stop bit. This bit also applies to the 10 interface.

The status of this bit is reflected by a read.

5 TX_BYTE Set this bit to transmit single bytes. If this is set only the first byte

is transmitted. The status of this bit is reflected by a read.

Set this bit if the RCPU is to control the UART transmit interface.
If this bit is clear, the normal 10 interface controls transmit. The
status of this bit is reflected by a read.

6 RCPU_TRANSMIT

Set this bit if the RCPU is to control the UART receive interface.
If this bit is clear, the normal 10 interface controls receive. The
status of this bit is reflected by a read.

7 RCPU_RECEIVE

16 OVERRUN_ERROR This error flag indicates that the four byte receive buffer has
overflowed and receiver data has been lost. This bit is read only.

17 FRAMING_ERROR This error flag indicates that a framing error occurred on received
data. The UART will cease operation until the error is cleared.
This bit is read only.

If the interface is being operated in byte mode, then the byte should be read from or written to bits 0-7.
However, note that if read overflow occurs (which is not flagged as an error in any case until the buffer
contains four bytes), then the bytes will be shifted up in the long buffer as they are received. This means
that a byte mode RCPU UART receiver actually has nearly four byte times to respond to the interrupt, a
truly massive latency were it to ever occur!

RCPU Stack Cache Base Pointer F18144 RW

This register points to the long aligned address where the stack cache base lies. This mechanism allows
stack caching by mapping the high 512 bytes of the RCPU data RAM to a second location anywhere in
memory. Accesses to this address then occur to local RAM, effectively caching the top 512 bytes of the
stack. (The bottom 512 bytes of the data RAM contain the interrupt vectors and so all of RAM cannot be
used for this).

This 512 byte mapping “rolls” rather than "slides”, so that location F1E200 always maps to an address
whose bottom 9 bits are 0, and so on.

The base pointer must never be set to greater then FFFEQO, as the result could be catastrophic.

The base pointer may be on any long-word boundary, allowing considerable flexibility in how this
mechanism is used. Compiler writers may choose to allocate more RAM than is needed at a given
procedure call by shifting the base pointer to below the bottom of the stack, so that the allocation
overhead does not always occur. It may also be necessary to build some hysteresis into the allocation /
de-allocation mechanism so that it does not thrash.

When a procedure prologue needs to adjust the stack cache base, it should move the base pointer to its
new location, then copy the number of bytes by which the base pointer has moved (Area A) to the correct
location in external RAM which has just been uncovered by the cache (Area C). Procedure epilogue code
should copy the amount of bytes by which the pointer is to be moved (Area C) from the location in
external RAM to the area that is about to be uncovered (Area A), then move the base pointer. Area B is
not affected by this operation and need not be moved.

26 October, 2002 CONFIDENTIAL

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 47

Allocate stack space (prologue)

ya
S
;ea c Area E Area o_f exte_zrnal RAM
overlaid by internal
,,,,,,,,,, RCPU data RAM
Area B Area B
********** Base Pointer
Area A Area D
Base Pointer]
Memory Map Memory Map

De-allocate stack space (epilogue) \
7
Note that the area overlaid should only be used by the RCPU as other processors cannot see any
modifications that have been made within the overlaid area.
Note also that if the DMA mechanism is to be used to copy this data, then it should be pointed at the copy
of the RAM at location F1E200, as it cannot access the overlaid address from its internal address pointer.

Memory Map

Digital Sound Processor - DSP

Introduction

The DSP is part of the Puck chip in Jaguar, and is one of the Jaguar RISC processors, which are
described above. It uses a very similar instruction set and programming model to the GPU and RCPU,
but there are certain differences specific to its role as a sound processor. The DSP has full access to the
system memory map as a bus master, and its internal memory may be accessed by the other bus
masters within the Jaguar System.

The DSP performs two roles within Jaguar: its primary function is sound synthesis; and it may also be
available for additional graphics processing.

Sound synthesis may be the playback of sampled sound or algorithmic sound generation, or a mixture of
the two. As the DSP is a fast general purpose processor it may be used for a broad range of synthesis
techniques. It contains several optimisations for sound processing when compared to the GPU, in
particular higher precision multiply / accumulate operations, circular buffer management, audio wave
tables in local ROM, additional local fast RAM, and audio output hardware within its internal address
space. It also contains hardware specifically for playing back PCM sound samples held in some private
DSP memory.

As many sound generation techniques will not require anything like the full power of the DSP, it may also
be used as an additional graphics processor. It has full access to the entire system address space. It
might well be used with sound synthesis occurring under an interrupt at sample rate, with the underlying
code performing something like matrix multiplies for 3D object rotation.

The DSP has 8K bytes of local fast RAM (twice as much as the GPU), and 2K bytes of wave tables to
help with sound synthesis. These are laid out as follows:

F1A000 - F1A1FF DSP control registers
F1B00O - F1ICFFF local RAM
F1DO000 - F1IDFFF wave table ROM

Wave Table ROM

The wave table ROM contains eight 128 entry wave tables. These are signed 16 bit values, and are sign-
extended to 32 bits, so that the ROM appears to occupy 1K 32 bit locations. Only the bottom 16 bits are
significant.

The waves available are as follows:

F1D000 TRI A triangle wave

F1D200 SINE A full wave SINE

F1D400 AMSINE An amplitude modulated SINE wave

F1D600 SINE12W A sine wave and its second order harmonic
F1D800 CHIRP16 A chirp - this is a sine wave increasing in frequency
F1DA0O NTRI A triangle wave with noise superimposed

F1DCO00 DELTA A spike

F1DEOO NOISE White noise

Arithmetic Functions

The DSP replaces the unsigned saturation functions of the GPU with two signed operations. SAT16S
takes a signed 32 bit operand and saturates it to a signed 16 bit value, i.e. if it is less than $FFFF8000 it
becomes $FFFF8000 and if it is greater than $00007FFF it becomes $00007FFF. SAT32S takes a signed
40 bit operand (see the section below entitled 'Extended Precision Multiply / Accumulates’) and saturates
it to a signed 32 bit value in a similar manner.

Interrupts

There are six interrupts sources within the DSP. These are allocated as follows:

External interrupt 1
External interrupt O
Timer interrupt 1
Timer interrupt 0

IS interface interrupt
CPU interrupt

OFRrNWMOU

The external interrupts are inputs from additional Jaguar hardware outside the Oberon & Puck system.
The timer interrupts are from Puck’s local programmable timers, the IS interrupt is from the local
synchronous serial interface, and the CPU interrupt is generated by any processor writing to the DSP
control register.

Circular Buffer Management

As circular buffers are common in DSP algorithms, for sample-looping, FIFOs, and so on; there is
hardware support for addressing circular buffers. These have to be 2" words long, and aligned to a 2"
boundary, where n is any practical value.

The support takes the form of two variants of ADDQ and SUBQ, namely ADDQMOD and SUBQMOD.
These allow pointers to be updated with the value wrapping in the form of counting modulo 2". This is
controlled by the modulo register which is a mask on the result of these instructions. Where a bit is 1 in
this register, the result of the ADDQMOD or SUBQMOD is unaffected by the instruction, where it is 0 the
add may modify it. Normally the high bits of this register are set to one, and the low bits set to zero as
appropriate.

DSP Flags Register F1A100 Read/Write

This register provides status and control bit for several important DSP functions. Control bits are:

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 48 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Bit Name Description

0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic operation
was zero. Certain arithmetic instructions do not affect the flags,
see above.

Bit Name Description

2-12 MTXADDR Matrix address, in the range F1B000 - FICFFC.

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borrow out of the
adder/subtract, and reflects carry out of some shift operations,

but it is not defined after other arithmetic operations.

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic

operation was negative.

DSP Data Organisation Register F1A10C Write only

This register controls the physical layout of the DSP I/O registers and instructions. If its current contents
are unknown, the same data should be written to both the low and high 16 bits.

3 IMASK Interrupt mask, set by the interrupt control logic at the start of the
service routine, and is cleared by the interrupt service routine

writing a 0. Writing a 1 to this location has no effect.

Bit Name Description

4-8 INT_ENAO-4 Interrupt enable bits for interrupts 0-4. The status of these bits is

overridden by IMASK.

0 BIG_IO When this bit is set, 32 bit registers in the CPU I/O space are big-
endian, i.e. the more significant 16 bits appear at the lower
address.

9-13 INT_CLRO-4 Interrupt latch clear bits for interrupts 0-4. These bits are used to
clear the interrupt latches, which may be read from the status
register. Writing a zero to any of these bits leaves it unchanged,

and the read value is always zero.

14 REGPAGE Switches from register bank 0 to register bank 1. This function is
overridden by the IMASK flag, which forces register bank 0 to be

used.

2 BIG_INSTR Normally, instructions are executed from a long-word in the order
low word then high word. When this bit is set the execution
ordering is reversed, i.e. high word then low word. However,
move immediate data remains little-endian, i.e. the data must
always be in the order low word then high word in the instruction

stream.

15 DMAEN When DMAEN is set, DSP LOAD and STORE instructions
perform external memory transfers at DMA priority, rather than
GPU priority. This has no effect on program data fetches, which
continue at GPU priority.

This bit must not be changed while an external memory cycle is
active. Note that these occur in the background, so be very
careful about changing this flag dynamically, and do not modify it
in an interrupt service routine.

16 INT_ENAS Interrupt enable bit for interrupt 5. Function as bits 4-8.

17 INT_CLR5 Interrupt latch clear bit for interrupt 5. Function as bits 9-13.

18 OVERFLOW_FLAG The ALU overflow flag, which is meaningful for two types of

operation: either it means the last add or subtract operation was

not representable for signed arithmetic, or it represents the state

of the bit set or cleared by the last bit set or clear operation

before the bit was set or cleared. Signed arithmetic overflow

occurs when:

« the sum of two positive numbers gives a negative result

« the sum of two negative numbers gives a positive result

¢ anegative number is subtracted from a positive number and
gives a negative result

e apositive number is subtracted from a negative number and
gives a positive result

Note that bit appears in bit 16 of the flags registers of the GPU.

DSP Program Counter F1A110 Read/Write
The DSP program counter may be written whenever the DSP is idle (DSPGO is clear). This is normally
used by the CPU to govern where program execution will start when the DSPGO bit is set.

The DSP program counter may be read at any time, and will give the address of the instruction currently
being executed. If the DSP reads it, this must be performed by the MOVE PC,Rn instruction, and not by
performing a load from it.

The DSP program counter must always be written to before setting the DSPGO control bit. When the
DSPGO bit is cleared, the program counter value will be corrupted, as at this point the pre-fetch queue is
discarded.

DSP Control/Status Register F1A114

This register governs the interface between the CPU and the DSP.

Read/Write

Bit Name Description

0 DSPGO This bit stops and starts the DSP. The CPU or DSP may write to
this register at any time, but only the DSP should be used to clear
this bit (unless single-stepping is enabled).

1 CPUINT Writing a 1 to this bit allows the DSP to interrupt the CPU. There
is no need for any acknowledge, and no need to clear the bit to

zero. Writing a zero has no effect. A value of zero is always read.

WARNING - when you write a value to this register, it may not appear to have changed in the following
two instructions, because of pipe-lining effects. If you are going to use the flags set by a STORE
instruction, or are changing one of the other bits such as the register bank, then ensure that there are two
NOPs after the STORE to this register.

2 DSPINTO Writing a 1 to this bit causes a DSP interrupt type 0. There is no
need for any acknowledge, and no need to clear the bit to zero.

Writing a zero has no effect. A value of zero is always read.

3 SINGLE_STEP When this bit is set DSP single-stepping is enabled. This means
that program execution will pause after each instruction, until a
SINGLE_GO command is issued.

The read status of this flag, SINGLE_STOP, indicates whether
the DSP has actually stopped, and should be polled before
issuing a further single step command. A one means the DSP is
awaiting a SINGLE_GO command

4 SINGLE_GO Writing a one to this bit advances program execution by one
instruction when execution is paused in single-step mode.
Neither writing to this bit at any other time, nor writing a zero, will

have any effect. Zero is always read.

5 unused Write zero.

DSP Matrix Control Register F1A104 Write only
This register controls the function of the MMULT instruction. Control bits are:
Bit Name Description
0-3 MWIDTH Matrix width, in the range 3 to 15
4 MADDW When set, successive reads of the matrix held in memory are
separated by the matrix width. When clear, reads are from
consecutive locations.
DSP Matrix Address Register F1A108 Write only

This register determines where, in local RAM, the matrix held in memory is.

6-10 INT_LATO-4 Interrupt latches for interrupts 0-4. The status of these bits
indicate which interrupt request latch is currently active, and the
appropriate bit should be cleared by the interrupt service routine,
using the INT_CLR bits in the flags register. Writing to these bits
has no effect.

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 49

11 BUS_HOG When the DSP is executing code out of external RAM it will
normally give up the bus between program fetches. This
behaviour should allow the CPU to continue to run at the same
time. Setting this bit causes the DSP to attempt to hold on to the
bus between program fetches, which improves its execution

speed, at the expense of any lower priority device using the bus.

12-15 VERSION These bits allow the DSP version code to be read. Current
version codes are:

2 First production release

Future variants of the DSP may contain additional features or
enhancements, and this value allows software to remain
compatible with all versions. It is intended that future versions will
be a superset of this DSP.

16 INT_LATS Interrupt latch for interrupt 5. Has the same function for interrupt

5 as bits 6-10 have for interrupts 0-4.

17 ENHANCED The bit has to be set to enable some of the enhanced

functionality of the DSP. The following functions are enabled

when this bit is set:

» additional condition codes are available to the JUMP and JR
instructions

« the JRE op-code is enabled, using NOP with non-zero
register number fields.

« The bug related to two consecutive divides is fixed

« the software controlled reset function is enabled

Multiply & Accumulate High Result Bits F1A120

This 32 bit register allows the high eight bits of the accumulated result to be read. After a RESMAC
instruction the result register of the RESMAC contains the bottom 32 bits of the accumulated value, and
this register contains the top eight bits, which are sign-extended to 32 bits.

Read only

DSP DMA Length Counter F1A120 Write only

Writing to this counter sets up the length of the transfer and initiates it. The length is written in bytes but
must be a whole number of phrases, and the allowable range of values is between 8 (one phrase) and
32760/ 7FF8 hex.. Only the DSP is allowed to write to this register if the DSP is running.

DSP DMA Control F1A124 Write only
This register controls various aspects of the DMA transfer. It is static.

Bit Name Description

0 DMA_OUT Controls the direction of the DMA transfer. When set transfer is

from internal to external memory.

18 SCORE_WRITE When this bit is set, score-board protection is enabled for register
writes. This means that if a slow write to a register, such as
external load or divide, is followed by a fast write to a register,
such as register move, that the writes will be executed in the
correct order. This bit should normally always be set, but may be

cleared for strict compatibility with Jaguar One.

19 unused

20 RESET Writing a one to this bits aborts all RCPU operation instantly if the
enhanced bit is set. Everything is cleared down to its power on
state, execution halts, the RCPU stops completely, and the
processor sub-system must be re-initialised from scratch. This bit
is very powerful. Writing a zero has no effect.

This bit must never be set in normal operation. It can have
catastrophic side effects on other processors, and is only
provided as a last resort for fatal situations.

21 INT_POL When this bit is set, the polarity of EINTO and EINT1 to the DSP
is reversed. This is an enhanced function, so the enhanced bit

must also be set.

1 DMA_DMA When this bit is set the transfer occurs at the high DSP bus
priority level (DMA level), when clear the transfer occurs at the
normal DSP priority level.

DSP DMA External Address F1A128 Write only

This register gives the phrase aligned address of external DMA data. It is a counter, and so must be
written before each DMA transfer. It wraps within a 4 Mbyte window. It must not be set to an address
within the DSP internal space, this will not work reliably, and may cause unpredictable system
crashes.

DSP DMA Internal Address F1A12C Write only

This register gives the long aligned address of internal DMA data, it is also a counter like the external
address and so must be written to before each transfer. Valid addresses are in the range F1A000 to
F1DFFC.

DSP DMA Status F1A124 Read only

This read port allows the status of the DMA controller to be examined. This register is all zero when the
DMA transfer is complete, and this condition should be polled for. Bits are assigned as follows:

Modulo instruction mask F1A118 Write only

This 32 bit register holds the value which governs which bits are modified by the ADDQMOD and
SUBQMOD instructions. A 1 means that the bit will be unaffected, a 0 means that it may be changed.
Normally, the higher bits are set to 1 and the lower bits to 0. This allows addresses to be readily
generated for circular buffers of size 2" bytes, where n is between 0 and 31.

Divide unit remainder F1A11C Read only

This 32 bit register contains a value from which the remainder after a division may be calculated. Refer to
the section on the Divide Unit.

Bit Name Description

0 OCYCLE There is a cycle active on the external bus

1 OCYCLERD The read transfer part of an external cycle is active.
2 DMA _PEND There is a DMA transfer pending.

3-15 DMA_COUNT These correspond to the same bits in the DMA length counter,

which counts down as each phrase is transferred.

16-31 unused Will be zero when the DMA is finished.

Private Memory Interface and PCM Processor

Divide unit Control F1A11C Write only
Bit Name Description
1 DIV_OFFSET If this bit is set, then the divide unit performs division of unsigned

16.16 bit numbers, otherwise 32 bit unsigned integer division is
performed.

The DSP has some external memory which no other processor can use. This memory is on a private bus
so that the DSP can access it without using the main 64-bit bus. It is intended for storing PCM sound
samples, so that a multiple voice sampled sound generator may be implemented without any main bus
overhead. This private memory may be either DRAM or ROM (SRAM, EEPROM or FLASH are also
possible in ROM mode), and may be either 4 or 8 bit. The exact type has not yet been selected, and the
hardware is capable of supporting all these types.

You can access this private memory in one of two ways.

1. DSP load and store instructions may access it in the address range EO0000h to EFFFFFh.

2. Asimple PCM list processor can fetch sound sample data from it.

Because of this, the DSP cannot perform loads or stores to EO0000 to EFFFFF on the main bus.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 50 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

PCM List Processor

The PCM List Processor is a data transfer engine within the DSP whose function is to fetch sample table
data from the DSP private memory, and place the sample data in DSP internal memory. It can read 8 or
16 bit samples, it can decompress 8-bit samples, and it can handle interpolation and looping.

The PCM list processor is a little like the object processor in that it reads a list of sample descriptions and
uses them to fetch the sample data. It does not have any means of branching, unlike the object
processor. Its list only needs modifying when a sample is to be started, stopped, or when a looping
sample has to be modified. It is normally triggered at sample rate by an interrupt process.

Each time it is triggered, the PCM list processor executes a linear list of PCM sample descriptions in DSP
local RAM, and fetches the sample data from the private memory. A special sample with a table size of
minus one flags the end of the table. The PCM processor has the following features for playing samples

« variable rate sample play (pitch shifting)

* interpolation between successive samples

« sample looping or stop at the end of each sample table

« automatic advance of the sample pointers, so that the only software overhead is firing it off for each
set of samples, and summing the resultant sample values

« support for eight and sixteen bit samples, and for eight bit p-law compressed samples

« samples may be played forwards or backwards

A sample description has the following format:

Long Name Bits Description
1 table size 0-19 | subtracted from pointer when looping, if this all ones, then
this sample description is the end of the table
2 table end address 0-19 used to detect end of sample
y-law flag 27 sample is 8-bit py-law data
backwards flag 28 the sample is being played backwards (negative rate) so
this reverses the end of table test
word size flag 29 sample is 16 bit words, not 8 bit bytes
interpolate flag 30 interpolate between sample and next one
loop flag 31 loop at the table end address, instead of stopping
3 rate, 20.12 bits 0-31 added to pointer after each fetch (19.13 bits for word
samples)
4 pointer, 20.12 bits 0-31 pointer to sample data (19.13 bits for word samples)
5 read value 0-31 sign-extended output sample data

These sample structures should be linearly packed in DSP RAM on a long boundary.

Interpolation uses the most significant six bits of the sample pointer to linearly interpolate between the
sample pointed at and the one above it in memory. It uses a 6 x 16 bit multiplier, so the sample is used at
full precision, but there is only six bits of precision in the interpolation control value. This should be
enough for most purposes.

Compressed Samples

Sixteen bit samples are the ideal way in which to store audio data. However, they are large and so there
is sometimes a need to store them in a more compact form. Much audio data can be stored as eight bit
samples. These can sound reasonable, but they are not so useful for audio data with a wide dynamic
range. The PCM list processor therefore supports compressed samples. These use an eight bit value
which is a non-linear representation of a sixteen bit sample. This gives a reasonable resolution both for
quiet and loud sounds.

Compressed samples for the PCM list processor use p-law compression to increase the dynamic range of
8-bit samples. p-Law is widely used in digital audio.

The mu law function is: The inverse p-law function is:

where ymax = 32767, u = 255, xmax = 127
This gives a function close, but not identical to, an exponential function. Graphically, it appears thus:

Mu Law Compression mu law

——inverse mu
35000

30000t

25000t

20000t

15000

10000

5000¢

127

The 8-bit sample data is treated as a sign and magnitude number, the sign is stored in the top bit, and the
7-bit magnitude component is used to index a look-up table, which gives a 13-bit de-compressed value.
The sign is restored by complementing the output if required, giving a decompressed value in the range
32764 to -32764.

The actual p-law expansion table is:

0000 0004 000C 0010 0018 001C 0024 002C 0034 003C 0044 004C 0058 0060 006C 0074
0080 008C 0098 00A4 00BO 00C0 00CC 00DC OOEC OOFC 010C 0120 0134 0144 015C 0170
0184 019C 01B4 01D0 01E8 0204 0220 0240 0260 0280 02A4 02C8 02EC 0314 033C 0368
0394 03C0 03F4 0424 045C 0490 04CC 0508 0548 0588 05D0 0618 0664 06BO 0704 0758
07B4 0810 0874 08D8 0944 09B4 0A28 0AA4 0B20 OBA8 0C30 0CC4 0D5C ODF8 OEAO OF4C
1000 10BC 1180 1250 1328 1408 14F0 15E8 16E8 17F0 1908 1A2C 1B5C 1C9C 1DE8 1F44
20B0 222C 23B8 2554 2704 28C8 2AA0 2C8C 2E90 30AC 32DC 3528 378C 3A0C 3CA8 3F64
4240 4538 4854 4B94 4EFC 5288 563C 5A1C 5E28 6260 66C8 6B64 7038 7540 7A80 7FFC

Note that bits 0 and 1 are set to zero on all these values.

DSP PCM List Pointer F1A130

This register holds the PCM control list pointer. This needs to be written each time the control list is to be
executed, and the action of writing this pointer initiates list execution. This pointer must be an address in
DSP internal RAM only, i.e. it must be in the range F1B000 - FLICFFF, and must be long aligned.

You can read the current list position in the PCM status port.

Write only

Bit Name Description

0-1 unused

2-14 List Pointer The valid part of the address.

15-31 unused

DSP PCM Control Register / Status Port F1A134 Read/Write

This register defines the type of memory attached to the private memory interface, and allows certain
status bits of the PCM control unit to be read. It should only be written by the machine initialisation
software, and not by application code.

Bit Name Description
‘X‘ 0 DRAM If this bit is set, the attached memory is DRAM, which requires a
Inl 1+ ¢ ——— [(Y)ln(lw)] multiplexed address, and row/column control signals.
X max e yma -1 If this bit is clear, the attached memory is ROM or SRAM, and is
y = ymax X = Xmax addressed directly.
|n(1 + y) H 1 NYBBLE If this bit is set, the private memory has a four bit data bus.
If this bit is clear, the private memory has an eight bit data bus.
26 October, 2002 CONFIDENTIAL A%ﬁw& © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 51

2-4 PTIM If DRAM is set, then this gives the DRAM pre-charge time. The
RAS control line will be high for at least 1 + PTIM clock cycles
between any pair of row cycles. A value of 0 is treated as 8.

If DRAM is clear, then this gives the ROM cycle time. Chip select
is active for 3 + PTIM clock cycles (OE goes active 2 clock cycles

after chip select). A value of 0 is treated as 8.

Blitter

5-7 RTIM If DRAM is set, then this gives the RAS active time of a refresh
cycle, RAS goes low for RTIM clock cycles, CAS goes low one
clock cycle before RAS, to give CAS-before-RAS refresh

operation. A value of 0 is treated as 8.

This section describes the Oberon Blitter.

What is the Blitter?

8-11 REFRATE This gives the rate of refresh cycles. These are performed at the
rate of one refresh every 64 x (REFRATE + 1). A REFRATE of 0

disables refresh, and 0 should be set if DRAM is not set.

12 IDLE Read-only; set when the PCM list processor is not active. This bit
may be polled after a write to the list pointer to determine when
the list has been processed.

13 NEG_LAT The PMEMLAT output is normally an active high address latch

(for latching the bottom eight bits of the address when DRAM is
clear). If this bit is set, it becomes an active low signal.

13-15 unused Write zero.

16-28 List Pointer Read-only; the current value of the PCM list pointer may be read
here, so that you can determine how much of the list has been
executed.

29-31 unused Write zero.

In the DSP, the Synchronous Serial Interface is mapped into the internal DSP space for higher efficiency
when the DSP is controlling it. These are effectively 32 bit locations. They are described elsewhere in this
document. In summary, they are:

SCLK Serial Clock Frequency F1A150 WO
SMODE Serial Mode F1A154 WO
LTXD Left transmit data F1A148 WO
RTXD Right transmit data F1A14C WO
LRXD Left receive data F1A148 RO
RRXD Right receive data F1A14C RO
SSTAT Serial Status F1A150 RO

Blitter is an abbreviation for bit block transfer. It purpose is to process blocks of bits or pixels, by filling
them in with a color or copying them from another block. These blocks may be one contiguous piece, or
they may be sub-blocks (such as rectangles) within a larger pixel array.

The Blitter may also be seen as a hardware engine designed for painting and moving pixels as quickly as
possible - it performs a variety of graphics operations at a rate limited largely by the memory access
speed. It is used as an aid to the GPU, allowing a GPU program to process higher level graphics
operations, whilst the Blitter performs the low-level repetitive pixel-by-pixel operations in parallel.

For example, the GPU might calculate the co-ordinates and gradients associated with a polygon, while
the Blitter draws the strips of pixels. Alternatively, the GPU might be processing text with attributes, and
computing font addresses and window positions, while the Blitter paints the characters.

The Blitter can perform a variety of operations on blocks of memory, including:
° simple memory copies

i copies and fills of rectangles within windows

i line-drawing

i image rotation and scaling

o single-scans of polygons fills

i Gouraud shading

o Z-buffering.

The Blitter can operate on 1, 2, 4, 8, 16 or 32 bit packed pixels, with considerable flexibility with regard to
the memory layout.

The tour de force of the Blitter is its ability to generate Gouraud shaded or textured polygons, using Z-
buffering, in sixteen bit pixel mode. A lot of the logic in the Blitter is devoted to its ability to create these
pixels four at a time, and to write them at a rate limited only by the bus bandwidth, using the GPU to
calculate the texture addresses, Z and intensity gradients, and the polygon vertices. The blitter will then
draw a triangle in a single operation. This will give the system the ability to generate realistic animated 3D
graphics.

Programming the Blitter

The Blitter is programmed by setting up a description of the required operation in its registers. These are
accessible in the system memory map, and so may be set by the GPU or by an external processor.

The registers control the three functional blocks that make up the Blitter, the address generator, data
path, and control logic. Each of these is described in the sections that follow.

The descriptions that follow give a full account of how the Blitter works. These are useful for reference,
but for an introduction to how to use the Blitter see the discussions further on, and in associated
documentation and examples.

Blitter Register Set

The following is a list of all the registers in the blitter:

Addr Name Type Status Description

F02200 Al_BASE e static Al base address. This is the lowest address
of the rectangle of pixels which Al points at.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

ﬁw& CONFIDENTIAL 26 October, 2002

Page 52 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
F02204 Al _FLAGS WO static Al control flags. These determine various F02274 BLIT_ZINC WOoe static Z increment
aspects of the pixel block pointed at by A1, F02278 | BLIT_STOP \We] static Collision stop control.
such as pixel size, block width, et cetera. F0227C | BLIT_IO WO static unless | Initial intensity 0. These four registers are
F02208 Al _CLIP WO static Al clipping window size. The gives the X and GOURD § alternative views of the pattern and source
Y size of a window for Al to clip to. X and Y data registers, and each corresponds to a
pointer values outside this window will not 16.16 bit initial intensity value. #
cause write cycles if this function is enabled. F02280 | BLIT_I1 WO static unless | Initial intensity 1.
F0220C | Al_PIXEL RW® dynamict A1 pixel pointer. This points at the pixel where GOURD §
the blit starts. It is in pixel co-ordinates, and F02284 | BLIT_I2 WO static unless | Initial intensity 2.
has sixteen bit X and Y parts. An alternate GOURD §
(a“d'gq%“; |C{[§rl]'cil):l-v';w 0; ;r\]:ILS :fg'St_e‘[(1S F02288 | BLIT_I3 7o) static unless | Initial intensity 3.
provided by the an registers. GOURD §
F02210 | Al_STEP WO®@ | dynamictt | Al step integer part. The step value may be F0228C | BLIT_Z0 WO static unless | Initial Z 0.These four registers are alternative
tarﬁ'gegrtlotr:re]e'nprll)é?Ilgg[IJmi;a;Itferrr?Zfeh Pgssof GOURZ § views of the source Z registers, and each
rough the ii 0p. view corresponds to a 16.16 bit initial Z value. #
X]f ;’?fé%f :2;’3‘:;’2‘9" by the AL_XSTEP and F02290 | BLIT Z1 WO static unless | Initial Z L.
= : GOURZ §
F02214 | Al_FSTEP WO® | dynamicti Al step fractional part. The fractional parts of F02294 BLIT 22 WO Static unless | Initial Z 2
the register above. An alternate view of this - GOURZ § .
;ff'ﬁg;‘égﬁ‘g?s‘igrgy the AL_XSTEP and F02298 | BLIT Z3 WO static unless | Initial Z 3.
- — - - — GOURZ §
F02218 AL_FPIXEL Rwe dynamict fAl ':.'XEI Ip[c))_lpterff{;lctlc_)na:l P?”t- Th: g|\|/tes thf F0229C | BLIT_FINNE woe dynamict The low sixteen bits of this register
rac '0?3]. ts o " € pixe P_Od'”delf)- trr: aAim; € R corresponds to the fractional part of the inner
\;fé”Aol Ylsrergigsltsefsr IS provided by the AL_. counter, and the high bits are the extended
. —~ . - - command bits.
F0221C | ALINC wo static All mcremebnt 'né(égzrtpig' The :ncrgr{]entﬁ F022A0 BLIT_IDELTA | wWO® dynamict This 16.16 bit register is the value that may be
\ézsﬁ’;&?{ ised?awﬁ 0 the pixel pointer arter added to the inner counter initial value after
. . — — each pass through the inner loop.
F02220 AL_FINC wo static 'fbr\;-cltri]g;i\rln;::t f(;??;'gr::gi’;i‘;' ;Séf/(las the FO22A4 | A1_XSD woe static This 16.16 bit register contains the Al X step
- - delta value.
Eg;;gg QE—E’C?(ES wg ::I'z 22 sgris'(:dfggssgAéi\?ll F022A8 Al1_YSD woe static This 16.16 bit register contains the A1 Y step
i . .
= - - — - delta value.
F0222C | A2_MASK wo static A2 window address mask. This is used to give FO22AC | BLIT_ISTEP | WO® | dynamict Intensity step value. This 16.16 bit value may
a bit-wise mask of the pixel pointer. This be added to the intensity values after each
Za;l_sez the pomlter to wrap within a pre- pass through the inner loop.
55535 T A P e e A‘; 'Siielrsgst“e? eAs " F022B0 | BLIT_ISD WO® | static Intensity step value delta. This 16.16 bit value
: : may be added to the intensity step value after
F02234 A2_STEP WO dynamic A2 step integer part. As Al. eac);1 pass through the inner)lloop.p
F02238 [BLIT_CMD WO® | dynamic Bliﬁter Icorr?f?and fetgistfr:- %Cli_?ttrol bitfs here F022B4 | BLIT_ZSTEP | WO® | dynamict Z step value. This 16.16 bit value may be
control what operation the blitter perrorms, added to the Z values after each pass through
and at_/vrite to this register initiates blitter the inner loop. P ¢
operation. F022B8 | BLIT_ZSD WO® | static Z step value delta. This 16.16 bit value ma
F02238 BLIT_STAT RO N/A B"|t|te£| ?tatus reglji?.ter. Allé)wts :he blitter to be - be adF::ied to the Z step value after each paZs
polied for completion and status. through the inner loop.
F0223C | BLIT_CNT WO®e | dynamict The blitter inner and outer loop counter F022BC | BLIT_XO WO dynamic § Texture X address pointer 0. These are 16.16
value?. These control the size of the blit bit values. #
operation. F022C0 | BLIT_X1 WO dynamic § Texture X address pointer 1
F02240 | BLIT_SRCD | WO Sstg“gEl:\Tless S;:gc?rg:tgidg fe()r:;[t)::sei:gtglr;ssli?(,tft?c():ttjll?giat“ F022C4 | BLIT X2 WO dynamic § Texture X address pointer 2
SRCEN’X or I%catilons 9 4 F022C8 BLIT_X3 WO dynamic § Texture X address pointer 3
GOURD ! F022CC | BLIT_YO WO dynamic § Texture Y address pointer 0 #
F02248 BLIT_DSTD WO static unless | Destination data. F022D0 | BLIT ¥1 WO dynam!c 8 Texture ¥ address po!nter L
DSTEN F022D4 | BLIT_Y2 WO dynamic § Texture Y address pointer 2
F02250 BLIT_DSTZ WO Static unless | Destination Z. F022D8 | BLIT_Y3 WO dyn_amlc § Texture Y _address pqmter 3 _
DSTENZ F022DC | BLIT_XINC woe static Texture X inner loop increment. This is the
F02258 BLIT_SRCZ1 | WO static unless | Source Z1, or computed Z integer parts. _amount a_dded @0 the X pointer after each pixel
SRCENZ or is drawn in the inner loop.
GOURZ FO22E0 | BLIT_XSTEP | WO® dynamict Texture X outer loop step
F02260 | BLIT_SRCZ2 | WO static unless | Source Z2, or computed Z fractional parts. FO22E4 [BLIT_XSD WOoe | static Texture X outer loop step delta. This is added
to the step value on each pass through the
SRCENZ or
GOURZ outer loop.
F02268 | BLIT_PATD WO static unless | Pattern data, or computed intensity integer FO22E8 | BLIT_YINC woe | static Texture Y inner loop increment. This is the
amount added to the Y pointer after each pixel
GOURD parts. : ; .
F02270 | BLIT_IINC Woe | static Intensity increment is drawn in the inner loop.

26 October, 2002

CONFIDENTIAL

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6 THIS DOCUMENT IS WORK IN PROGRESS Page 53

FO22EC | BLIT_YSTEP | WO® | dynamict Texture Y outer loop step. When POLYGON RW These registers may be written to and read from. Their contents may be modified as the result
is set this is the initial texture X pointer. of blitter operation.

FO22F0 | BLIT_YSD WO®e | static Texture Y outer loop step delta. This is added t Although these registers are dynamic, i.e. they are modified by the blitter, the double-buffer
to the step value on each pass through the will restore them automatically to the previously written value, so they may be treated as static
outer loop. if you wish the same initial value to be re-used on the next blit.

FO022F4 BLIT_TBASE [woe static Texture base address ’ .)

— These registers are only dynamic if POLYGON is set.

FO022F8 | BLIT_IINCX WO® | static Alternate intensity increment register, this is i gf s ! . !) . .
an 11.16 bit value which affects only the § These registers are not normally written to as part of a blit operation, as the blitter can
intensity field. initialise them automatically if DATINIT is set.

FO022FC | A1_MASK e} static Al window address mask. This is used to give # 0 is aligned with bit 0 and so is the right-most for big-endian system (like the Jaguar console),
a bit-wise mask of the pixel pointer. This and the left-most for a little endian system. You may therefore wish to consider the register at
causes the pointer to wrap within a pre- the highest address to be register 0 for a big-endian system.
defined rectangle.

F02300 A2_CLIP WO static A2 clipping window size. The gives the X and -

Y size of a window for A2 to clip to. X and Y Address Generation
pointer values outside this window will not
cause write cycles if this function is enabled. o
F02304 AL X Woe dynamict This gives an alternate view of the X portions The address generator generates an address within a window of pixels. A window is a packed array of
- of the A1 pixel pointer and its fractional parts pixels in memory, and may well be the data associated with an Object Processor object. A window is
and allows these to be written as a single ' described by its base address and width. A pointer into this window is set up for the Blitter start position,
16.16 bit integer. and is programmed in terms of its X and Y address. The ability to program the address generator in pixel
F02308 ALY wWoe dynamict This gives an alternate view of the Y portions address terms considerably simplifies the task of preparing Blitter commands.
- of the A1 pixel pointer and its fractional parts, In addition to these registers, various other registers contain specific values to allow considerable
and allows these to be written as a single flexibility in how the pointers are modified during Blitter operations.
; 16.16 bit integer. i _ i The Blitter has two address generation units, used for the source and destination addresses of copy

F0230C | A2_X wo dynamic The bottom 16 bits of this register give an operations, etc. The two address generators are called AL and A2. Al is normally the destination address
alternate means if initialising the X portion of register and A2 the source, although these roles may be reversed. Al is more sophisticated in its address
theAAlZ) pixel pointer. (These are not the same generation capabilities than A2.
as

F02310 A2_Y WO dynamic The bottom 16 bits of this register give an Windows
alternate means if initialising the Y portion of

i thg A2 pixel pointer. i i All notions of address within the Blitter correspond with the concept of a window. A window is a rectangle

F02314 | A1_XSTEP WO® | dynamict? This gives an alternate view of the X portions of pixels, stored in memory as a linear array of packed phrases. A window is described by a base register,
of the Al step value and its fractional parts, and has a width and height, both in pixels. A set of flags describe the size of those pixels, their physical
agd g”t?WS these to be written as a single layout in memory, and various aspects of how the pointer is updated.

16.16 bit integer. P

F02318 ALYSTEP Woe dynamicTE This gives an alternate view of the ¥ portions The ad_dress itself is generated from a wmdoyv pointer. This has_an X and Y value, and again is in pixels.

) . The pointer may point to areas outside the window, and both pointers support hardware clipping of
of the Al step value and its fractional parts, 2 .

N ; addresses outside the window.
and allows these to be written as a single
16.16 bit integer. .

F0231C | BLIT_COLOR | Wo® | static This allows the CRY color fields of the pattern Address Generation
dfata to b.e updated asa §|ngle Qperatlon. Bits The X and Y pointers are sixteen bit values. However, the address generation mechanism will only
eight to fifteen of this register will update the . . o . .
color field of all four pixels in the pattern data generate valid addresses for Y values in the range 0-4095, i.e. it treats Y values as 12 bit unsigned
register. Note that this is double-buffered values. The higher order bits of Y are ignored. X is treated as an unsigned 16 bit value, but only values
unlike the pattern data itself. from 0-32767 are valid in the blitter generally.

This register also specifies the static mixing The address generator derives the window width from a very simple six bit floating-point format. The width
colour for mixing with texture using Gouraud value has a four bit unsigned exponent, and a three bit mantissa, whose top bit is implicit, and which has
intensity to control the mix. When used for this the point after the implicit top bit. This is similar to a cut down version of the IEEE single precision format
the colour is specified in bits zero to fifteen. without the sign bit. It must give a whole number of phrases in the current pixel size. Valid exponent
See below. values are in the range 0-11.

_ Mixer control bits are specified here. i For example, a window width of 640 is 1010000000 binary, i.e. 1.01 x 2%9. Therefore the mantissa takes

F02320 | BLIT_TXTD WO static unless TITE texture data regl;ters maf)]’ be W“tée” to the value 01 (implicit top bit), and the exponent 1001. The width is therefore 1001 01 in binary.
TEXTEN allow some mixing effects without readin .) . . :)

text‘tlJvre data. 'misgis a sixtyﬁl)url;)it regilstgr Note that there is a window bounds clipping mechanism for the A1 pointer, which treats the X and Y as

F02400 BLIT_TCLUT WO Static Texture CLUT (16 words) signed sixteen bit values. This is described elsewhere.

F04000 | TXT_RAM RW static Blitter texture RAM, 2048 x 32 bits . s

FO6000 | TXT_ROM RW non-volatile | Blitter texture ROM, 2048 x 32 bits Pointer Updating

Both Blitter address generators can update their pointers so that they describe a raster scan over a
(2} These registers are double-buffered. This means that they may be written to while the blitter is rectangle. Along a scan line, the pointer may be updated either by one pixel or to the next phrase
still active performing the previous blit operation. The buffer which is written to is transferred boundary, depending on how the Blitter is currently operating. Refer to the Data Path section for further
into the main register when the next blitter command is written. details.
WO These registers are write-only. They may only be written to, their contents are not visible. At the end of a scan line, the pointer is updated by a step value, which is the distance in X and Y to the
RO These registers are read-only. They may be read from, but not modified. start of the next scan line. This action of scan across the block, then step to the next start, is controlled by

© 1992, 1993, 1994, 1995 ATARI Corp.

TRUR_

CONFIDENTIAL 26 October, 2002

Page 54 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

the Blitter's inner and outer control loops, the inner loop traversing a scan line, and the outer loop adding
the step value. Thus the inner loop length is the block width, and the outer loop length the block height.

In addition to these modes, both address registers have certain special modes.

Either pointer may have a Boolean mask applied. This is logically ANDed with the pointer, so that the
pointers may not exceed the bounds of a rectangle, whose sides are a power of two pixels long. This is
intended to repeat a source texture or pattern over a larger destination area, e.g. filling a wall with a
repeated brick pattern

Al supports address updates based on a Digital Differential Analyzer. This technique produces
successive address by adding an increment to the pointers, both of which have integer and fractional
parts, and is used in particular for line-drawing and rotating images.

The pointer and increment of Al, in both X and Y, have sixteen bit integer parts and sixteen bit fractional
parts. The step value used on the outer loop address update also has integer and fractional parts.

Data Path

The Blitter has a sixty-four bit data path, with a variety of registers. It can be used to process entire
phrases at once, or one pixel at a time. Pixels may the one, two, four, eight, sixteen or thirty-two bits wide,
and are always stored in a packed manner.

When writing or copying pixels, arbitrary alignment of the source and destination data is allowed, and the
Blitter aligns the source to match the destination data when required.

When transferring phrases only pixels of eight bits or larger can be processed. The source and
destination address pointers do not need to be aligned to the same point in a phrase, the Blitter will
automatically align the source to the destination. If two source phrase must be read before a destination
phrase can be written, then the SRCENX flag must be set to ensure that enough source data is fetched
for the blit to operate correctly.

There are therefore two source data registers, to provide current source and previous source for

alignment. There is also a destination data register, which can be logically combined with the source, and
is also used to restore the destination data area when only parts of it are updated.

There is a parallel mechanism for Z data, used for Z-buffering. This allows the depth of the data about to
be written to be compared with the depth of the data already present on the screen, and the write of the
new data inhibited if the data already present has a higher priority. This applies to sixteen bit pixel mode
only.

There are therefore two source Z registers and a destination Z register.

Write Data

Write data may come from any of the following sources:

« the pattern data register

« the logic function unit

« computed Gouraud shaded data
« texture unit data

« shaded texture data

« the data adder

The default is the LFU output. The ADDDSEL flag selects the data adder output, PATDSEL selects the
pattern register output of the pattern data multiplexer. The PDSEL bits then determine if the texture data,
pattern data or the output of the multiplicative mixing unit, which is used for shading texture data, is
selected.

Write Z may come from

* source Z
* computed Z

The GOURZ flag selects computed Z data.

Overriding both these selections is a mechanism to write back unchanged destination data. If a mode is
enabled where data may be inhibited, e.g. bit-to-byte expansion, or Z buffering, then a pre-read of the
destination data should be performed. This also applies to pixel sizes of less than eight bits.

The data paths which control the generation of write data are given in the simplified diagram below. This
shows the precedence of the various control bits.

Source Data Registers and Shiftgr] Destination Data Pattern Data / | registers
Initialised and loaded by SRCEN] | Initialised and loaded by DSTE Initialised and updated by GOURQ]

| Color Data Registei

Data output from
Texture Unit
Clipping Unit for
saturation
—
MIXSELD.2 _rl 2to 1 Mux I 2to 1I Mux I I_I 2to 1 Mux I V LFU_FUNC 0-3
| | Logic Function Unit
A V B i
(F*A) + ((1-F)*B)
| | Adder output
PDSELO-1 4 to 1 Multiplexe]
0 = pattern data
1 = texture data 1
2 = extended precision pattern (with saturation) |

3 = weighted average unit output

3 t0 1 Multiplexe PATDSEL and ADDDSEL
| Write Data

The clipping unit on the pattern data takes the extended precision intensity data fields and clips those to
eight bits.

The multiplicative mixing unit performs the weighted average function shown. The A and B inputs, and the
mixing control input F, may all be switched between different inputs to allow a variety of modes. These
include:

1. Mix texture data with a background color using the computed intensity to control the mix

2. Do multiplicative Gouraud shading by mixing two colours, the texture data and the color register,
according to the computed intensity. This allows shading in CRY or RGB16 modes, and offers a
choice between shading to black or shading to white.

3. Translucent or anti-aliased edge texture mapping by mixing texture with the destination, with the
source data providing a mix map (this technique is also known as alpha shading, and the source data
is the alpha buffer).

4. Mixing two images from the source and destination fields, using the intensity to control the mix (the
intensity is constant in this mode).

5. Computed translucency, mixing the texture data with the destination according to the computed
intensity.

The adder output is the sum of the source and destination data, and is selected as the output data by
setting ADDDSEL.

This diagram does not show the adders used for performing the Gouraud data and Z-buffer calculation,
the Z-data path, or the output mask control..

Data Comparators
There are three data comparators available within the Blitter. These are:

i The bit comparator. This is used for bit to pixel expansion, and selects a bit or group of bits
from the source data register, using a counter which is cleared every time the inner loop is
entered. The bit is then used to control whether a pixel is written at the current location.

i The Z comparator. This is used in 16 bit pixel mode to compare the 16 bit un-signed integer Z
attribute of a pixel on the screen, the destination Z, with that about to be written, the source Z,
and to prevent the write operation if the pixel on the screen has a higher priority.

i The data comparator. This is used to provide a means to make block copies with transparent
colours, and to help with flood fill by performing searches. It compares pixel values in either 8

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 55

or 16 bit pixel modes. It normally compares the source data register with the pattern data
register, but it may also compare destination data with the pattern data.

The comparators may be used to achieve three effects:

b When painting pixels one at a time a comparator output can be used to inhibit the write of a
pixel, leaving the previous value unchanged.

i When painting pixels a phrase at a time, the comparator outputs can force destination data to
be written back. If this has been previously read then the data will be left unchanged, if not
then a background colour can be used, stored in the destination data register

i The action of the Blitter can be stopped altogether. This may be used for collision detection,
searching, etc.

Note that the bit comparator can only produce a mask to operate over an entire phrase in 8 bit pixel
mode.

Bus Interface

The Blitter accesses memory through the 64 bit co-processor bus, and takes full advantage of the width
and high-speed of this bus. The Blitter will normally cycle this bus at a rate limited only by the speed of the
external memory, although there is a one clock cycle overhead when turning round from a read to a write
transfer.

All external memory is viewed by the Blitter as being phrase wide - if the physical layout is narrower then
the memory controller expands the transfer into the appropriate number of transfers.

The Blitter requests the bus at the start of an operation, and will not stop requesting it until the entire
operation is complete. As described elsewhere, higher priority bus masters can request and be granted
the bus during a Blitter operation, and this will suspend Blitter operation until the higher priority operation
has released the bus.

el se if UPDA2 goto a2update
el se if DATINIT goto init_if
el se restart inner
alfupdate: Update Al pointer fractions and more (see below)
goto alupdate
alupdat e: Update Al pointer integers
i f GOURZ. POLYGON goto zfupdate
el se if UPDA2 goto a2update
el se if DATINIT goto init_if

el se restart inner
zf updat e: Update computed Z step fractions
goto zupdate
zupdat e: Update computed Z step integers
if UPDA2 goto a2update
el se if DATINIT goto init_if

el se restart inner
a2updat e: Update A2 pointer
if DATINIT goto init_if
el se restart inner
init_if: Initialise 4 intensity fraction fields and 4 texture X pointers
goto init_ii
init_ii: Initialise 4 intensity integer fields and 4 texture Y pointers
if GOURZ goto init_zf
el se restart inner
init_zf: Initialise 4 Z fraction fields
goto init_zi
init_zi Initialise 4 Z integer fields

restart inner

The outer loop state machine fires off the inner loop, and controls the updating process between passes
through the inner loop. States have functions as follows:

idle Blitter is off the bus, and no activity takes place.

inner Inner loop is active, read and write cycles are performed

Controlling State Machines

These state machines are the “program” that the blitter runs. You can think of them as two nested f or
loops, the outer loop is generally passed though once for each scan line of the blit, the inner loop is
passed through once for each pixel or each phrase of the blit.

The state diagrams may look hard to follow, and you probably need never examine them in any detail, but
they are here to give an absolute reference to what the blitter does and in what order it does it. What is
useful is the discussion of each state and what happens in it. The effect of some of the more useful
control bits, such as POLYGON and DATINIT, is made a lot clearer by understanding how they affect
these control loops.

The blitter is quite a complex piece of hardware, and it is hard to present exactly how it works in a concise
manner, but this section should give some insight into what is going on.

Outer Loop
The Blitter outer loop control state machine is represented by this pseudo-code:
idle: Blitter is idle, and will not perform any bus activity
if GO if DATINIT goto init_if

el se goto inner
init_if: Initialise intensity fractions and texture X
goto init_ii
init_ii: Initialise intensity integers and texture Y
if GOURZ goto init_zf
el se goto inner
init_zf: Initialise Z fractions
goto init_zi
init_zi: Initialise Z integers
goto inner
inner: Run inner loop state machine (asserts step from its idle state)
if INDONEif OUTERO goto idle

el se if UPDAlFgoto alfupdate

el se if UPDA1 goto alupdate
el se if GOURZ. POLYGON goto zfupdate

alfupdate A1 step fraction is added to Al pointer fraction

POLYGON true: Al step delta X and Y fraction parts are added to the Al step X and Y
fraction parts (the value prior to this add is used for the step to pointer add).
POLYGON true: inner count step fraction is added to the inner count fraction part
POLYGON.GOURD true: the | fraction step is added to the computed intensity fraction
parts t

POLYGON.GOURD true: the | fraction step delta is added to the | fraction step

alupdate Al step is added to Al pointer, with carry from the fractional add

POLYGON true: Al step delta X and Y integer parts are added to the Al step X and Y
integer parts, with carry from the corresponding fractional part add (again, the value prior
to this add is used for the step to pointer add).

POLYGON true: inner count step is added to the inner count, with carry
POLYGON.GOURD true: the | step is added to the computed intensities, with carry t
POLYGON.GOURD true: the | step delta is added to the | step, with carry

the texture X and Y step delta values are added to the X and Y step values.

zfupdate the Z fraction step is added to the computed Z fraction parts T
the Z fraction step delta is added to the Z fraction step
zupdate the Z step is added to the computed Zs, with carry T

the Z step delta is added to the Z step, with carry

a2update A2 step is added to the A2 pointer

init_if Initialise the fractional part of the computed intensity fields, from the increment and step
registers. The texture X integer and fractional parts can also be initialised.

init_ii Initialise the integer part of the computed intensity, and texture Y integer and fractional
parts..

init_zf Initialise the fractional part of the computed Z fields.

init_zi Initialise the integer part of the computed Z fields.

T 0O these functions are irrelevant if the DATINIT function is enabled, which it will normally be.

All these states will complete in one clock cycle, with the exception of the idle state, which means the
blitter is quiescent; and the inner state, which takes as long as is required to complete on strip of pixels. It
is therefore possible for the blitter to spend a maximum of nine clock cycles of inactivity between passes
through the inner loop.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 56 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
Inner Loop Register Description
The blitter inner loop state machine is represented by this pseudo-code:
ide:) Inactive, blitter is idle or passing round outer loop The following is a list of all the externally accessible locations within the Blitter. The data registers may
if STEP if SRCENX goto sreadx only be written to while the Blitter is idle.
el se if TXTEXT goto txtread
el se if SRCEN goto sread
el se if DSTEN goto dread N
el se if DSTENZ goto dzread Address Registers
el se goto dwrite
sreadx: Extra source data read
if STEP if SRCENZ goto szreadx All address registers are 32 bits unless otherwise indicated. The addresses given are byte offsets from
el se if TXTEXT goto txtread the base of the GPU area.
el se if SRCEN goto sread
el se if DSTEN goto dread
el se i f DSTENZ goto dzread Al Base Register F02200 Write only
el se goto dwrite
szreadx: Extra source Z read 32 bit register containing a pointer to the base of the window pointer to by Al. This address must be
if STEP if TXTEXT goto txtread phrase aligned
el se goto sread ’
txtread: Read external texture data . .
if STEP if SRCEN goto sread Flags Register F02204 Write only
el se if DSTEN goto dread
el se i If DSTENZ got o gzr ead A set of flags controlling various aspects of the A1 window and how addresses are updated.
el se goto dwite - —
sread: Source data read Bit Name Description
if STEP if SRCENZ goto szread 0-1 Pitch The distance between successive phrases of pixel Qata in the window data
el se if DSTEN goto dread structure. Gaps may be used to provide alternate pixel maps for double-
el se i If DSTENZ got o gzr ead buffering, for Z data, and for other control information. The distance between
el se goto dwrite two successive phrases of pixels is given by two to the power of this value,
szread: . Source Z read with one special case; i.e. a pitch of 0 means pixel data phrases are
it STEP :elf SESTEN ig?l &?’Eﬁgdgm o dzread contiguous, 1 means 1 phrase gaps, 2 means 3 phrase gaps; but 3 means 2
el se goto dwrite phrase gaps, which may be especially useful for double-buffered Z-buffer
dr ead: Destination data read displays, as it allows two phrases of pixels to each phrase of Z-buffer data -
if STEP if DSTENZ goto dzread there is no need to double buffer the Z data..
el se goto dwrite 2 unused
dzread: ~ Destination Z read 3-5 Pixel size The pixel size, where the actual pixel size is 2", n is the value stored here.
if STEP goto dwrite Values 0-5 are allowed.
dwrite:) Destination data write 6-8 Z offset This value gives the offset from a phrase of pixel data of its corresponding Z
if STEP Ielf SESTV‘RZ igfm ION%ZE‘QR’{)' tgl oidie data in phrases. Values of 0 and 7 are not used.
el se igf TXTEXT goto txtread 9-14 Width Thislwidth i; distinct from the width in pixe?ls stored in the window register,
el se if SRCEN goto sread and is the width used for address generation.
el se i If DSTEN ,gfm %SCT‘EEBZW ‘o daread The width is a six bit floating point value in pixels, with a four bit unsigned
el se Iel se 3313 d\f\; F?e exponent, and a three bit mantissa, whose top bit is implicit, and which has
dzwrit Destination Z writ the point after the implicit top bit. This is similar to the IEEE single precision
zwite: estination £ write ; ; : i ;
if STEP if INNERO goto idle format W|_thout_ the sign bit. It must give a whole number of phrases in the
el se i f TXTEXT goto txtread current pixel size. R
el se if SRCEN goto sread For example, a screen width of 640 encodes as 1.01 x 2°, where 1.01 is a
el se 'elf SESTEN igfm gs#‘zaid oto deread binary number. This gives an exponent field of 9, i.e.1001, and a mantissa
ol so Joto dwrite field of (1)01. This is stored thus:
Bi t 14 13 12 11 10 9
. E3 |E2 |E1 [EO | ML | MD
States have functions as follows: | | | | | | |
idle Another state in the outer loop is active. No bus transfers are performed. 1 0 0 1 0 1
sreadx Extra source data read at the start of an inner loop pass. 15 Mask Enables Boolean AND masking of the Al pointer by its window register.
szreadx Extra source Z read as the start of an inner loop pass. 16-17 Xadd ctrl. These control the update of the X pointer on each pass round the inner loop.
txtread Read texture data from external memory. This state is only used for external texture. Values are:)
TEXTEXT is the condition TEXTMODE=1. 0 Add phrase width and truncate to phrlase bpundary (selts phrase mode),
sread Source data read. note that you must orjly use this for eight bit or larger pixels
1 Add pixel size, effectively add one
szread Source Z read. > Add zero
dread Destination data read. 3 Add the increment
dzread Destination Z read. _ i 18 Y add ctrl. | This bit controls how the Y pointer is updated within the inner loop. It is
dwrite Destination write. Every pass round the inner loop must go through this state.. overridden by the X control bits if they are in add increment mode.
dzwrite Destination Z write. 4 Add zero
5 Addone
The step signal is a composite decode that indicates that the inner loop may start, or that the underlying 19 X'sign This bit may be set in conjunction with the X add pixel size mode to make the
memory interface has completed and the blitter may advance to the next memory transfer. operation subtract pixel size. It should not be set with other modes.
20 Y sign Makes the Y add one mode into Y subtract one.

26 October, 2002 CONFIDENTIAL

TRUAR._

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 57

21 Step load When this bit is set, the step register is loaded directly into the pointer on
each pass round the outer loop, instead of being added to it. This is used for
polygon drawing mode. The UPDAL1 flag must be set, the UPDALF flag will
usually be set too.

A1l Clipping Window Size F02208 Write only

This register contains the size in pixels, and may be used for clipping writes, so that if the pointer leaves
the window bounds no write is performed. The width is an unsigned fifteen bit value in the low word, the
height an unsigned fifteen bit value in the high word. The top bit of each word is ignored.

The window origin (0,0) is always at the top left hand corner of the window, and so clipping is performed
when the pointer values are negative, or when the pointer values are greater than or equal to these
values. If the desired clip rectangle does not have its top left corner at the window origin, then the window
base register should be modified to make it the top left corner of the clip rectangle.

In pixel mode clipping will occur when the Al pointer goes outside the clipping window if Al is being used
as either the source or the destination pointer. In phrase mode, however, clipping will only work correctly
when Al is the destination pointer (DSTAZ2 is not set).

Al Window Mask FO022FC Write only

This register is used as the window size only in the sense that it may be used to AND mask the pointer
register when the Mask flag is set. This causes the address to wrap within a rectangular area and may be
used to give fill patterns.

Al Window Pixel Pointer F0220C Read/Write

This register contains the X (low word) and Y (high word) pointers onto the window, and are the location
where the next pixel will be written. They are sixteen bit signed values. If X and Y values go out of range
positively then they will advance through memory (X will wrap onto the next line, Y will go off the end of
the window). Only X values in the range 0-32767 and Y values in the range 0-4095 will produce valid
addresses from the address generator, values outside this range are for clipping purposes only.

Al Step Value F02210 Write only

The step register contains two signed sixteen bit values, which are the X step (low word) and Y step (high
word). These may be added to the X and Y pointer on each pass round the outer loop, between passes
through the inner loop.

When calculating the step value for phrase-mode blits, note that the X pointer will be left pointing at the
start of the first phrase not written by the blit.

If the step load bit is set in the Al flags register, then this register is loaded into the pointer in the outer
loop (when the UPDAL bit is set) instead of being added to it.

A1l Step Fraction Value F02214 Write only

The step fraction register may be added to the fractional parts of the Al pointer in the same manner as
the step value. This is used when Al is being used to scan over the source of a scaled or rotated image.

If the step load bit is set in the Al flags register, then this register is loaded into the fractional parts of the
pointer in the outer loop (when the UPDALF bit is set) instead of being added to it.

Al Window Pixel Pointer Fraction F02218 Read/Write

This register contains the fractional parts of the pointer when Al is being used to implement a D.D.A.

based address generator, for line-drawing, etc. The X part is in the low word, and the Y part in the high
word.

Al Pixel Pointer Increment F0221C Write only

The increment is added to the pointer value within the inner loop when the address update is in add
increment mode. This register contains the two 16 bit signed integer parts of the increment, the X part is
in the low word, the Y part in the high word.

Al Pixel Pointer Increment Fraction F02220 Write only

This is the fractional parts of the increment described above.

Al X Step Delta FO022A4 Write only

This register holds the 16.16 bit value which may be added to the Al step X value on each pass through
the outer loop if the POLYGON and UPDA1 and UPDALF bits are set.

A1Y Step Delta F022A8 Write only

This register holds the 16.16 bit value which may be added to the Al step Y value on each pass through
the outer loop if the POLYGON and UPDA1 and UPDALF bits are set.

A2 Base Register F02224

32 bit register containing a pointer to the base of the window pointer to by A2. This address must be
phrase aligned.

Write only

A2 Flags Register F02228 Write only
A set of flags controlling various aspects of the A2 window and how addresses are updated.

Bits Name Description

0-1 Pitch As Al.

2 unused

3-5 Pixel size As Al.

6-8 Z offset As Al.

9-14 Width As Al.

15 Mask Enables Boolean AND masking of the A2 pointer by its window register.

16-17 X add ctrl. These control the update of the X pointer on each pass round the inner loop.

Values are:

0 Add phrase width (truncate to phrase boundary), note that you may only
use this for eight bit or larger pixels
1 Add pixel size (effectively add one)

2 Add zero

18 Y add ctrl. This bit controls how the Y pointer is updated within the inner loop.
3 Add zero
4 Add one

19 X sign This bit may be set in conjunction with the X add pixel size mode to make the
operation subtract pixel size. It should not be set with other modes.

20 Y sign Makes the Y add one mode into Y subtract one.

21 Step load When this bit is set, the step register is loaded directly into the pointer on
each pass round the outer loop, instead of being added to it The UPDA2 flag
must be set.

22 CLIP_A2 Enables clipping when the A2 pointer lies outside its window boundaries.

This has the effect of inhibiting destination writes within the inner loop, but
Blitter operation will continue. This is similar to the CLIP_A1 function in the

command register.

A2 Clipping Window Size F02300

This register contains the size in pixels, and may be used for clipping writes, so that if the pointer leaves
the window bounds no write is performed. The width is an unsigned fifteen bit value in the low word, the
height an unsigned fifteen bit value in the high word. The top bit of each word is ignored.

Write only

The window origin (0,0) is always at the top left hand corner of the window, and so clipping is performed
when the pointer values are negative, or when the pointer values are greater than or equal to these
values. If the desired clip rectangle does not have its top left corner at the window origin, then the window
base register should be modified to make it the top left corner of the clip rectangle.

In pixel mode clipping will occur when the A2 pointer goes outside the clipping window if A2 is being used
as either the source or the destination pointer. In phrase mode, however, clipping will only work correctly
when A2 is the destination pointer (DSTAZ2 is set).

A2 Window Mask F0222C Write only

This register is used as the window size only in the sense that it may be used to AND mask the pointer
register when the Mask flag is set. This causes the address to wrap within a rectangular area and may be
used to give fill patterns.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 58

THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

A2 Window Pointer F02230 Read/Write

This register contains the X (low word) and Y (high word) pointers onto the window, and are the location
where the next pixel will be written. They are sixteen bit signed values. If X and Y values go out of range
positively then they will advance through memory (X will wrap onto the next line, Y will go off the end of
the window). Only X values in the range 0-32767 and Y values in the range 0-4095 will produce valid
addresses from the address generator, values outside this range are for clipping purposes only.

F02234

The step register contains two signed sixteen bit values, which are the X step (low word) and Y step (high
word). These may be added to the X and Y pointer on each pass round the outer loop, between passes
through the inner loop.

A2 Step Value Write only

When calculating the step value for phrase-mode blits, note that the X pointer will be left pointing at the
start of the first phrase not written by the blit.

Control Registers

F02238

This register describes the operation of the Blitter. A write to this register initiates Blitter operation, so it
should be written to last when setting up a Blitter command. Control bits are:

| Bit

Command Register Write only

| Name | Description |

Bits 0-5 enable corresponding memory cycles within the inner loop. Destination write cycles are always
performed (subject to comparator control), but all other cycle types are optional.

0 SRCEN Enables a source data read as part of the inner loop operation.

1 SRCENZ Enables a source Z read as part of the inner loop operation. This bit
is ignored unless SRCEN is set.

2 SRCENX Enables an "extra" source data read at the start of an inner loop
operation. This is necessary where data has to be re-aligned, and
may also sometimes be of use in bit-to-pixel expansion. If SRCENZ
is set an extra Z read is also performed.

3 DSTEN Enables a destination data read as part of inner loop operation. This
must always be performed for pixels smaller than 8 bits, where part
of the destination data write will need to restore the data that was
previously there.

4 DSTENZ Enables a destination Z read as part of inner loop operation.

5 DSTWRZ Enables a destination Z write as part of inner loop operation.

6 CLIP_A1 Enables clipping when the Al pointer lies outside its window
boundaries. This has the effect of inhibiting destination writes within
the inner loop, but Blitter operation will continue.

7 NOGO Diagnostic use only, prevents writes to the command register

starting the Blitter. Set to zero.
Bits 8-10 enable address updates within the outer loop. These should only be enabled when required as
there is a one clock cycle overhead per update.

8 UPDA1F Add the fractional part of the Al step value to the fractional part of
the Al pointer between inner loop operations in the outer loop.

9 UPDA1 Add the Al step value to the Al pointer between inner loop
operations in the outer loop.

10 UPDA2 Add the A2 step value to the A2 pointer between inner loop
operations in the outer loop.

11 DSTA2 Reverses the normal roles of the address registers from Al as
destination and A2 as source to A2 as destination and Al as source.

12 GOURD Enable Gouraud shaded data updates within inner loop, i.e. the

intensity gradient fractional part, repeated four times, is added to the
computed intensity fraction register (a.k.a. destination data), then
the intensity gradient integer part is added with the carry from the
previous add to the computed intensity value register (a.k.a. pattern
data).

13

GOURZ

Enable polygon Z data updates within the inner loop, i.e. add Z
fractions to the Z fraction register (source Z 2), then add with carry
the Z integer part to the Z integers (source Z 1).

14

TOPBEN

Enable carry into the top byte of the intensity integers in Gouraud
data updates (leave clear for CRY mode).

15

TOPNEN

Enable carry into the top nibble of the intensity integers in Gouraud
data updates (leave clear for CRY mode).

Bits 16-17
controlled

select alternative write
by the LFUFUNC bits.

data — the default source is the Logic Function Unit, whose output is

16

PATDSEL

Select pattern data as the write data.

17

ADDDSEL

Selects the sum of source and destination data as the write data.
Note that the source data is a signed offset. Leave TOPBEN and
TOPNEN clear and the source data gives three signed offsets for
each of the CRY fields, and the intensity value will saturate. Set
TOPBEN and TOPNEN and sixteen bit saturating adds are
performed. This can be used to lighten and darken images. This
only applies to 16 bit pixels. This function is now largely obsolete
and should not be generally used, the multiplicative data mixer and
the texture unit offer more general ways of combining images.

18-20

ZMODE

These bits give the conditions under which the Z comparator
generates an inhibit. Setting them all to zero disables the Z
comparator. This can only operate in 16 bit per pixel mode.
bit O - source less than destination

bit 1 - source equal to destination

bit 2 - source greater than destination

21-24

LFUFUNC

The bits control the data produced by the logic function unit. The
output is the Boolean OR of the following minterms:

bit 0 AND (NOT source) AND (NOT destination)

bit 1 AND (NOT source) AND destination

bit 2 AND source AND (NOT destination)

bit 3 AND source AND destination

for example, source data is selected by setting 1100 (destination
terms cancel out), or the XOR of source and data is 0110.

25

CMPDST

Make the pixel value comparator compare destination data with
pattern data rather than source data with pattern data.

26

BCOMPEN

Enable write inhibit on the output from the bit comparator. This
works pixel by pixel in any size, but over whole phrases only on 8 bit
pixels. When operating in pixel mode then the write does not occur
unless BKGWREN is set, but in phrase mode destination data is
always written when the comparator determines that the pixel should
not be written.

27

DCOMPEN

Enable write inhibit on the output from the data comparator. This
only applies to 8 bit and 16 bit per pixel modes. When operating in
pixel mode then the write does not occur unless BKGWREN is set,
but in phrase mode destination data is always written when the
comparator determines that the pixel should not be written.

28

BKGWREN

When a write inhibit occurs, this flag enables the Blitter to still
perform the write, but to write back destination data. This only
applies to pixel mode, in phrase mode destination data is always
written.

29

BUSHI

When set the blitter accesses the bus at the higher of its two
priorities. This allows the blitter to access the bus at a higher priority
than the object processor, and may speed up operations that involve
a lot of short blits such as polygon drawing. Setting BUSHI across
long blits may disturb the screen.

30

SRCSHADE

This bit uses the IINC register to modify the intensity of data read
from the source address, and may be used to lighten or darken
images. It may be used in conjunction with GOURZ, but not
GOURD. The data read from the source is modified, so source data
should be selected using the LFU as the write data. This is
particularly intended for performing flat shading on texture mapped
surfaces. This function is now obsolete and should NOT be used,
use the sum of the texture data stream and the intensity/pattern
values to flat shade or Gouraud shade textures.

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 59

31 POLYGON Enables blitter polygon drawing mode. The outer loop gains a 20-22 TEXTXS0-2 Texture width, encoded as follows:
variety of additional arithmetic operations to prepare the blitter for 0 32 pixels
the next scan line of the polygon. See the discussion of polygon 1 64 pixels
drawing below. 2 128 pixels
3 256 pixels
Status Register F02238 Read only 4 512 pixels
5 1024 pixels
Bit Name Description 6 2048 pixels
0 IDLE When set, the blitter is completely idle and its last bus transaction is 23-25 TEXTYS0-2 Texture height, encoded in the same way as the texture width.
completed. 26 TEXTNIB Texture is packed as nibbles, not as words. It is expanded by a
1 STOPPED When set, the blitter is stopped in its collision detection mode - see small blitter palette.
the collision control register below. 27 TEXTMIR When this bit is set, textures are mirrored as they wrap. For
2 PENDING A double-buffered blitter command is pending and the previous blit example, if the texture width is 32 pixels, then when bit 5 of the X
is still in operation, so another blitter command cannot yet be pointer is set, the texture X address is two’s complemented.
written. 28 TEXTRGB This bit flips the interpolation unit and multiplicative data mixers
3 inner SREADX Diagnostic only. between CRY and RGB16 modes. When this is set, the pixels are
4 inner SZREADX Diagnostic only. interpolated and mixed as RGB, if clear then they are CRY. This is
5 inner SREAD Diagnostic only. used in conjunction with the INTERP bit when anti-aliasing textures.
6 inner SZREAD Diagnostic only. 29 EXT_INT Extended precision intensity calculations. When this bit is set all
7 inner DREAD Diagnostic only. intensity calculations are performed at 11.16 bit precision as signed
) inner DZREAD Diagnostic only. numbers, and the saturation is performed as the pixel values are
9 inner DWRITE Diagnostic only. 30-31 PDSELO-1 'IO'Lr:tepsu;;t:esr;f:at:tsv?::t)vavbpears as pattern data in the data unit. The
10 inner DZWRITE D!agnost!c only. output of this is selected when the PATDSEL bit is enabled.
11 outer IDLE Diagnostic only. - i
- n Functions are as follows:
12 outer INNER Diagnostic only. 0 Pattern data
13 outer A1IFUPDATE Diagnostic only. 1 Texture data
14 outer AIUPDATE Diagnostic only. 2 Extended precision pattern data (use this if EXT_INT is set
15 outer A2UPDATE Diagnostic only. instead of 0)
16-31 inner count Diagnostic only. 3 Multiplicative mix of texture data and the color register (or
destination data) with the saturated extended precision intensity
Inner and Outer Counters Register F0223C Write only controlling the mix.

The low word is the number of iterations of the inner loop operation. This is a sixteen bit value which
reloads the inner loop counter on each entry to the inner loop.

The high word is the number of iterations of the outer loop. This is a sixteen bit value which is loaded
directly into the outer loop counter.

The counters both accept values in the range 1 to 65536 (encoded as 0).

Inner Count Fraction & Extended Control F0229C Write only

The low 16 bits of this register give the fractional part of the inner counter reload value. This is used in
polygon mode, when the inner count can change by a non-integer amount on each scan line. The high
sixteen bits are used to extend the blitter command set.

Inner Counter Delta F022A0 Write only

This value is added to the inner counter reload value after each pass through the inner loop if POLYGON
and A1IUPDATE are both set. It is a 16.16 bit value. The inner counter reload value has a fractional part
when this is enabled, the integer part is in the low word of the counters register and the fraction part is in
the low word of the inner counter fraction and extended control register. This odd arrangement is for
historical reasons.

To avoid ragged right hand edges on the polygon, the fractional part of the A1 X pointer is also added to
the reload value before the counter itself is loaded. This only occurs when POLYGON is set.

Bit Name Description

Data Registers

0-15 FINNER The fractional part of the inner counter reload value.

16 DATINIT Enables the initialisation of all four of the | and Z data fields from the
| and Z step register and increment values. The step value is taken
to be the value of the first pixel in the scan line, and the increment is
added to it or subtracted from it to fill in all four 16 bit pixel fields in
the intensity integer and fraction registers, and in the Z integer and
fraction fields. If GOURZ is not set only the | field is initialised.

This function can also apply to texture mapping.

17-18 TEXTMODE Texture mapping control modes:

Disable texture mapping unit

Fetch textures from external memory (TEXTEXT)

Fetch textures from a single internal texture map

Fetch textures from a duplicated internal texture map
(TEXTDBL)

In modes 2 & 3 texture fetches are from internal memory even if the
texture base address is not in internal memory.

WN RO

19 INTERP Enable the texture interpolation unit for anti-aliased textures.

All data registers are sixty-four bits, unless otherwise noted.

Source Data Register F02240 Write only

The source data may be pre-loaded with data for bit-to-byte expansion. The source data register also
serves to hold the four sixteen bit fractional parts of intensity when computing Gouraud shaded intensity.

Destination Data Register F02248 Write only
This 64 bit register holds the destination data - which may be either read in the inner loop to allow

unmodified pixels to be written back correctly when in phrase-mode, or it may be used to give background
or paper colours, if it is not read.

Destination Z Register F02250 Write only

This 64 bit register holds the destination Z value, and may be used as the data register.

© 1992, 1993, 1994, 1995 ATARI Corp.

TRUR_

CONFIDENTIAL 26 October, 2002

Page 60 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Source Z Register 1 F02258

The source Z register 1 is also used to hold the four integer parts of computed Z.

Write only

Source Z Register 2 F02260 Write only

The source Z register 2 is also used to hold the four fraction parts of computed Z.

Pattern Data Register F02268 Write only

The pattern data register also serves to hold the computed intensity integer parts and their associated
colours.

Intensity Increment F02270 Write only

This thirty-two bit register holds the integer and fractional parts of the intensity increment used for
Gouraud shading. Note that the top eight bits will modify the colour value, and should therefore normally
be left set to zero.

Z Increment F02274 Write only

This thirty-two bit register holds the integer and fractional parts of the Z increment used for computed Z
polygon drawing.

Collision control and Mode F02278 Write only

This registers allows the Blitter to be stopped when an inner loop write inhibit occurs. Blitter stop will occur
in painting in pixel-by-pixel mode (X add control is 1), BKGWREN is clear, and one of BCOMPEN,
DCOMPEN or ZMODEO-2 is set, along with the matching condition.

The Blitter operation may at that point be resumed or aborted.

registers. Note that the colour fields in the pattern data registers are unaffected by writes to these
registers.

Z0 F0228C Write only
Z1 F02290 Write only
Z2 F02294 Write only
Z3 F02298 Write only

These registers are analogous to the intensity registers, and are for Z buffer operation. They affect the
corresponding parts of the computed Z integer (source Z1) and computed Z fraction (source Z2) registers.
They are 32 bit values (16.16 bit numbers).

Intensity Step FO022AC Write only
This register gives the step value for intensity. This is either added to the intensity values in the outer

loop, or may be used, if DATINIT is set, to reload the four computed intensity values, suitable modified by
the increment value. See the discussion on polygons below.

Write Only

This register is added to the intensity step value on each pass through the outer loop, the POLYGON,
GOURD, UPDAL and UPDALF bits all have to be set for this to operate correctly.

Intensity Step Delta F022B0

Z Step F022B4

This register gives the step value for Z. This is either added to the Z values in the outer loop, or may be
used, if DATINIT is set, to reload the four computed Z values, suitable modified by the Z increment value.
See the discussion on polygons below.

Write only

Z Step Delta F022B8 Write Only

This register is added to the Z step value on each pass through the outer loop, the POLYGON, GOURZ,
UPDAL and UPDALF bits all have to be set for this to operate correctly.

Color Data and Data Path Control F0231C Write Only

This double buffered register allows the CRY color fields of the pattern data to be updated as a single
operation. Bits eight to fifteen of this register will update the color field of all four pixels in the pattern data
register. Note that this is double-buffered unlike the pattern data itself.

This register also specifies the static mixing colour for mixing with texture using Gouraud intensity to
control the mix. When used for this the colour is specified in bits zero to fifteen, and can be either CRY or
RGB16.

The higher bits of this register control the blitter data path, as follows.

Bit Name Description

0-7 COLORO-7 Specifies the low 8 bits of the background color value

8-15 COLORS8-15 Specifies the top 8 bits of the background color value, and the
provide a double-buffered means of initialising the CRY color fields

of the pattern data registers for Gouraud shading.

16 MIXSELO Controls the input to operand A of the multiplicative data mixer.
When this bits is clear texture data is selected, when set the source

data is selected.

Bit Name Description

0 RESUME Writing a one to this bit when the Blitter has stopped under the
above conditions will cause the Blitter to resume operations. Writing
a zero has no effect.

1 ABORT Writing a one to this bit when the Blitter has stopped under the
above conditions will cause the Blitter to terminate the current
operation and revert to its idle state. Writing a zero has no effect.

2 STOPEN Set this bit to enable Blitter collision stops. Clear it to disable them.

3 FIX_BUGS This bit should be set to fix the following bugs, which are enabled by
default for compatibility reasons:

« The A1 ADDY control bit affected both address registers. It
affects only Al and the A2 one now has the required effect
when fixed.

« Incorrect masking of the phrase which corresponds to the right
hand edge of the Al clip window.

4 INT_DBUF When this bit is set, the blitter interrupt will occur when the double
buffer can accept another command. This means that after the first
blitter command is written, an interrupt will be generated
immediately, and the double-buffer may be filled, interrupts will then
occur each time the double buffer is emptied.

When this bit is clear, the blitter interrupt occurs when blitter

operation has completed.

Intensity O F0227C Write only
Intensity 1 F02280 Write only
Intensity 2 F02284 Write only
Intensity 3 F02288 Write only

These four registers provide an alternate view of the computed intensity integer parts (pattern data) and
computed intensity fractional parts (source data) registers. They are a convenient way of updating the
intensity values for Gouraud shading. Each register is a 24 bit value (8.16 bit number), with the top eight
bits unused, that modifies the corresponding fields of the computed intensity integer and fractional part

17 MIXSEL1 Controls the input to operand B of the multiplicative data mixer.
When this bit is clear the background color is selected (repeated
four times over the phrase), when this bit is set the destination data

is selected.

18 MIXSEL2 Control the input to the mix control input F of the multiplicative data
mixer. When this bit is clear the saturated extended precision
intensity fields are selected, when it is set the bottom byte of each

word of the source data is used as the mix control.

A

26 October, 2002 CONFIDENTIAL ATART

ﬁw& © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 61

Texture Unit Control Registers

Texture X address pointer 0-3
Texture Y address pointer 0-3

F022BC-C8 Write Only
F022CC-D8 Write Only
These four register pairs correspond to the four X and Y pointers required to simultaneously fetch four
texture map source pixels when generating a phrase of destination data. If phrase mode is not set, the

only pointer 0 is used, unless the texture is being anti-aliased in which case all four are required to index
the four corners of the square.

In texture mapped polygon generation, these registers will not normally be written to, as they are
automatically initialised from the texture X and Y step registers. Set POLYGON and DATINIT.

These are 11.16 bit values, allowing textures up to 2048 pixels on a side. The address pointers wrap if
they overflow or underflow.

Texture X increment F022DC Write Only
Texture Y increment FO22E8 Write Only

This register pair give the amount added to the texture X and Y pointers after each pass through the inner
loop. They therefore control the rotation and scaling occurring within the inner loop. Remember that the

rotation and scaling are applied to the source, so that making these values smaller will increase the
magpnification of the texture.

When the blitter is running in phrase mode, then the value written here should be four times the pixel
increment, because each address pointer has to be advanced four pixels.

These are 11.16 bit values.

Texture X step FO022E0 Write Only
Texture Y step FO22EC Write Only

When DATINIT is not set, this register pair give the step added the pointer in the outer loop.

However, normally it will be set, in which case the name step is a misnomer. When DATINIT is set this is
the value used to initialise the texture address pointers at the start of each pass through the inner loop.
The step delta is added to these registers after each pass through the inner loop, so that these values
follow a line down the left hand edge of the polygon.

These are 11.16 bit values.

Texture X step delta FO022E4
Texture Y step delta FO022F0

Write Only
Write Only
These registers give the value added to the step registers on each pass round the outer loop, if UPDAL is

set. These registers should give the gradient, in texture space, of the “left” hand side of the polygon in
destination terms.

phrase boundary, and the offset (in the pixel size set) from the phrase boundary written into the X pointer.
The Y pointer should be set to zero.

The length of the block should be stored in the inner counter - the number represents the number of
pixels, so the largest block that can be copied is 32767 pixels, where 32 bit pixels are set this is 128K. For
smaller blocks it is usually easier to work in bytes. The outer counter should be set to one.

The Blitter needs to be told how to update the pointers after each read and write cycle, so the add control
bits are set to zero to indicate phrase mode in both address flags registers.

Having set these, a command is stored in the command register, with the SRCEN bit set to enable source
reads, and the LFUFUNC bits set to 1100 to select source data. If the source is not phrase aligned, then
the SRCENX bit must be set.

Rectangle Moves

Rectangle moves are very like block moves, but use a two-dimensional data set rather than the one-
dimension of a block operation. This brings in various new concepts.

A two-dimensional array of pixels is stored in memory as a linear array of phrases. This will usually be the
data field of a bit-mapped object. The Blitter has to know the width of this window of pixels. As an address
in the window, in pixel terms, is given by the X pointer plus the width times the Y pointer; a multiply
operation is necessary to compute the address. To avoid the need for a hardware multiplier in the Blitter
address generator, the width is rather strangely encoded.

Blitter window width is expressed as a floating-point number. The actual value has a four bit exponent and
a three bit mantissa, whose top bit is implicit. This allows Blitter window widths to be any value whose
binary form has no more than three significant digits followed by some number of zeroes.

As an example, here are how various window widths encode:

Value Binary Floating-point Encoded
20 000000010100 | 1.01 x 2" 0100 01
80 000001010000 | 1.01 x 2”6 011001
128 000010000000 | 1.00 x 2"7 0111 00
640 001010000000 | 1.01 x 2”9 1001 01
3584 111000000000 | 1.11x27M1 1011 11

Modes of Operation

This section discusses some of the typical modes of operation of the Blitter. It is by no means a complete
guide to all possible modes, but will show how to do certain common operations. This is the best way to
learn how to use the Blitter.

Throughout this section, flags in flags registers that are not mentioned should always be set to zero.
Registers that are not mentioned need not be set up.

Block Moves

The simplest of all Blitter operations is a block move, copying one area of memory onto another. The
Blitter will perform this operation one phrase at a time, and it is therefore a very rapid way of transferring
data.

The source address of the data should be stored in the A2 base register, and the destination address in
the Al base register. If these are not phrase aligned addresses then they should be rounded down to a

The largest width value allowed is the last value one in this table - the smallest width is one phrase in the
current pixel size. The width must always be a whole number of phrases in the current pixel size.

Rectangles are blitted like a raster scan, i.e. a line of pixels is transferred, then the pointer advances one
line and transfers the next scan line of the rectangle. This jump from the end of one line to the start of the
next is given by the step value. If pixels are being transferred one at a time, then the step value for X is
the window width minus the rectangle width. If pixels are being transferred one phrase at a time, then the
X pointer is left pointing at the start of the next phrase after the end of the block, and so the step value
should be reduced accordingly.

Clipping may be performed by the Al address generator, and simply prevents writes occurring at
addresses outside the window boundaries, i.e. X or Y either negative or grater than the window size. The
window size is programmed in the A1 window size registers. This is not much faster than writing the
clipped pixels, so if a large number of pixels are to be clipped then it is worth performing the clipping at a
higher level.

Character Painting

Character painting is a particular example of a class of operations requiring bit to pixel expansion. As well
as character painting, this may include such things as background patterns, simple texture fills, etc.

When bit to pixel expansion is being performed, the source data is used as a bit mask. Bits are extracted
from the source data and if they are set then the corresponding pixel is painted in the currently selected
output data form, if the bit is clear then either the pixel is left unchanged, or a background colour is
written.

This allows character painting to paint the characters only, leaving the background unchanged (if the
destination data is read), or with another colour written to the ‘paper’ areas (pre-loaded into the destination
data register which is not read in the inner loop).

Character painting can be performed one pixel at a time in all screen modes, and can also be performed
one phrase at a time in eight bit per pixel modes.

The bit selection counter is reset every time the inner loop is left, so bit packed data patterns may be up
to eight pixels wide.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 62 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Image Rotation

The Blitter can rotate and scale images as a single operation.
Consider taking a rectangular image and rotating it into a window.

o The bounding rectangle of the rotated image is calculated in the destination window.

N This rectangle is then transformed into the source image co-ordinate system.

N A2 is used as the destination address register and performs a raster scan over the bounding
rectangle, pixel-by-pixel. The width and height of the blit are given by the size of this bounding
rectangle.

o Al performs a scan over the source image, with the increment integer and fraction set up to

describe a scan over the first line of the translated bounding rectangle. The step and fraction
parts then translate it to the start of the next scan.

i Clipping is generated when Al is outside the bounds of the source image, so that writes at A2
will only be enables when Al lies within the bounds of the source image, clipping the rotated
form correctly.

Consider as an example, a 12 pixel square image starting at (10,10) in a window. We would like to rotate
this image clockwise by 30 degrees, make it larger by a factor of 1.3, and move it across by 30 pixels.

First it is necessary to transpose the square's co-ordinates into the target co-ordinate system. The basic
program below shows how to do this:

100 deg30 = .523598775

110 PRINT "Co-ordi nates? "

120 INPUT xi, vyi

130 x = xi - 16

140y = yi - 16

150 xs = (x * COS(deg30)) - (y * SIN deg30))

160 ys = (x * SIN(deg30)) + (y * COS(deg30))
X

170 =xs * 1.3

180y =ys * 1.3

190 x = x + 46

200y =y + 16

210 PRINT "Translated: ", INT(x + .5), INT(y + .5)

This translates the vertices of the square as follows:
(10,10) -> (43,5)
(21,10) -> (56,12)
(21,21) -> (48,25)
(10,21) -> (36,18)

The bounding box is therefore from X = 36 to 56, and Y = 5 to 25. The vertices of this are then translated
back to the source co-ordinate system, as shown by another basic program:

100 degnB0 = -.523598775
110 PRINT "Co-ordi nates? "
120 INPUT. xi, yi

130 x = xi - 46
140 y = yi - 16
150 x = x / 1.3
160y =y / 1.3
170 xs = (x * COS(degnB0)) - (y * SIN(degnB80))
180 ys = (x * SIN(degn80)) + (y * COS(degnB0))

190 x = xs + 16

200y = ys + 16

210 PRINT "Reverse translated: ", INT(x + .5), INT(y + .5)
This translates the vertices of the bounding box as follows:

(36,5) -> (5,13)

(56,5) -> (18,5)

(56, 25) -> (26,18)

(36,25) -> (13,26)
We then set up Al as the source address register, making its window base the top left hand corner of the
source image, and its window size the image size. The Al pointer will traverse the translated bounding
box.

Gouraud Shading and Z-Buffering

Gouraud shading is a simple technique for modelling lit curved surfaces, which are represented by a
series of polygons. To make the surface appear curved, the intensity must vary smoothly, rather than
being uniform over each polygon. Gouraud shading approximates to the appearance of the curved
surface by computing the intensity at each vertex, using a vertex normal, and some suitable illumination

model. The vertex intensity is then linearly interpolated across the polygon edges, and the edge intensities

are linearly interpolated across the polygon scan lines.

Gouraud shading is only an approximation to the appearance of the curved surface, and may appear
unnatural where there are large intensity changes across single polygons. However, it is much more
attractive than not graduating the shading at all. Better shading can be achieved with Phong shading,
where the normals are interpolated, but this is much more computationally intensive, and is not feasible
within the Blitter.

Z-buffering involves attaching a Z value attribute to each pixel, which corresponds to how far away it is
from the observer. When pixels are drawn on the screen, their Z values can be compared with the Z of
the pixels already there, and the existing data preserved if closer to the observer. Z-buffering therefore
provides a simple means of achieving hidden surface removal.

The Blitter can perform Gouraud shading and Z-buffering in sixteen bit pixel mode only. Each blit creates
one scan line of a polygon, with the graphics processor responsible for re-calculating the start, length and
gradient parameters for each scan line. Four pixels and their associated Z values can be calculated as
fast as the memory interface can write them out, so the bus rate is always the limiting factor.

To calculate the Z and intensity values, the Blitter contains registers which represent the Z and intensity
with a sixteen bit integer and sixteen bit fractional part. The intensity integer also contains the colour
value, so intensity is prevented from overflowing into the colour information. The TOPBEN and TOPNEN
bits enable this overflow, if desired.

There are four of these thirty-two bit values for intensity, and four for Z, so that four pixels may be
calculated in parallel. There are also thirty-two bit Z and intensity increment registers, which give the
amount added to each pixel for each write.

At each pass round the inner loop; the sixteen bit fractional part of the intensity increment is added to the
fractional parts of the intensity values, held in the source data register. Then the eight bit integer part of
the intensity is added with carry out of the fractional add to the integer pixel values in the pattern data
register. Carry is prevented from propagating from intensity to colour. A similar mechanism governs Z.

Both the intensity and the Z values saturate. This means that if they reach their lowest or highest values
they are clipped there, rather than wrapping round. For example, adding one to a Z value of FFFF hex will
give FFFF, not the overflow result 0000.

To take an example, consider blitting an 18 pixel strip of Gouraud shaded Z-buffered pixels. The Blitter
command registers would be programmed as follows (all other registers need not be written).

Address registers are set up as follows:

Al_BASE 0x01600000 The wi ndow base address

Al_PI TCH 1 Pi xel data and Z data alternate

Al_PSI ZE 4 16 bit pixels

Al_ZOFFS 1 Z data is one phrase up from pixel data
Al_W DTH Ox11 20-pi xel wi ndow 1.01 x 2*4 = 0100 01
Al_ADDC 0 Add one phrase to address

Al_W N_X 20 W ndow wi dt h

Al_WNY 5 W ndow hei ght

Al_PTR X 1 First pixel at address 0,1

Al_PTRY 0

Data registers are set up assuming the first pixel has an intensity of C7.2833, and a colour of 00. The
intensity gradient is minus 15.9265. The values for the first four pixels have to be set up (the left-most is
actually off the edge of the strip, so the intensity gradient is subtracted from it). Similarly, the Z of the first
pixel is ETE7.E000, and the Z gradient is minus 1818.1FFF.

Pattern 00DC00C700B1009C Intensity integer parts and col our data

Sour ce FEDCEAC7D6B1C29C Intensity fractions

Source Z1 FFFFE7E7CFCFB7B7 Z integer parts

Source Z2 FFFFEO00C001A002 Z fractional parts

I Inc FFA9B66C Intensity increment (four times minus 15.9265)

Z Inc 9F9F8004 Z increnent (four times ninus 1818. FFFF)

Control information is set up as follows:

I nner count 18 Strip width

Quter count 1 Singl e pixel high strip

DSTEN 1 Read destination data, to restore if necessary
DSTENZ 1 Read destination Z, to conpare with conputed Z
DSTWRZ 1 Wite destination Z, restoring or replacing
CLIP_AL 1 Clip within w ndow

GOURD 1 Gouraud data conputation enabl ed

GOURZ 1 Z buffer data conputation enabl ed

PATDSEL 1 Wite pattern data

ZMODE 3 Overwite existing data if the new Z value is

greater than or equal to the existing Z value

The numbers here are pretty arbitrary, but they show the general idea.

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 63

Polygon Drawing

Midsummer can draw polygons as a single blit. These polygons must be three or four sided, and can have
only two sides which are not horizontal.

Polygon types that can be drawn in one blit

These polygons are drawn by allowing the inner loop counter to be modified by a delta value after each
pass round the inner loop. The inner loop counter initial value and its inner loop count delta value are both
16.16 bit numbers. To re-initialise the pixel address pointer, the step value itself requires a step delta,
which is added to it after each pass round the inner loop, thus:

inner loop counter delta gives change in width
for each scan line

— step moves the pointer from the end of one line to
the start of the next, the step delta describes how
much this changes from one line to the next

To allow these polygons the be Gouraud shaded, the | and Z values require a step value, and that step
value must have a step delta, in the same manner as the pointer. Texture source address X and Y values
will also have a step and step delta value, as well as their increment values.

Gouraud Shading

This polygon blitting mode may also be applied to shaded polygons. However it is largely restricted to
blitting triangles in this mode, because it is only for triangles that the intensity gradient does not change
from one scan line to the next. This is also true for Z and texture address values. The constant gradient is
not in fact true if perspective maths is involved, but is a good approximation. (See the discussion of
perspective in texture mapping.)

Address Generation

Address generation for the polygon is handled by the Al address generator. The address pointer is set up
as normal to point at the first pixel of the polygon to be drawn. The inner counter and its fractional part are
set up to give the width of the first row of pixels. The width of the second row of pixel should also be
calculated, and the difference between this and the first loaded into the inner counter delta register.

A1 will normally be set to phrase mode for this operation, to give maximum speed. As this leaves the
pointer on a phrase boundary at the end of a scan line rather than on a pixel boundary, the step values
would not vary linearly as the polygon is drawn. Therefore the Al step load bit in the flags register should
be set. This causes the outer loop Al updates to load the pointer directly from the step register (and its
fractional part), rather than using the step register to modify the pointer. This means that the step register
becomes the pointer initial value. The step delta registers then give the amount by which the step value
should be modified each line. Normally, the X step will be set to the gradient of the left hand edge of the
polygon, and the Y step set to one.

The UPDA1 and UPDALF bits have to both be set for the step register function to operate correctly.

Data Handling

To allow the data for Gouraud shading and Z-buffering to be reset on each scan line, the | and Z values
both now have step and step delta values. However, the data ALU values also suffer from the same
problem as the address, i.e. scan lines end on a phrase boundary and not a pixel boundary, so the
variation in the step values required to reset them to the start of the next scan line does not vary linearly.

To remove this problem, and to improve the programmer’s model of the blitter generally, a new arithmetic
unit in the blitter data section comes into play when the DATINIT bit is set. This causes an ALU to pre-
calculate the offsets required for the four pixels that make up a phrase, taking the step value as the initial

pixel value, and the increment as the offset. For big-endian operation the four possible initial conditions
are:

\]/first pixel to be drawn

X%4=0 63| 0 | 1 x increment | 2 x increment | 3 x increment | 0

\]/first pixel to be drawn

X%4=1 | -1 x increment | 0 | 1 x increment | 2 x increment |

\]/first pixel to be drawn

X%4=2 | -2 x increment | -1 x increment | 0 | 1 x increment |
\]/first pixel to be drawn

X%4=3 | -3 x increment | -2 x increment | -1 x increment | 0 |

Table of initialization offsets for pixels.

The initialisation unit takes the | and Z increment values, divides them by four, then scales them and adds
them to or subtracts them from the step values as shown. This is done for both the integer and fractional
parts. The X value used for this is the Al X pointer.

This function is not restricted to the blitter polygon drawing mode, and may also be used when polygons
are being drawn strip by strip, as on Jaguar One, to save processing overhead.

Intensity and Colour Values

Midsummer implements extended precision intensity calculations. These should now be used in
preference to the old Jaguar One 8.16 bit Jaguar values. Intensity is now treated as a signed 11.16 bit
number, when the EXT_INT bit is set for extended precision intensity calculation. This mode must be
used when using the polygon draw mode and Gouraud shading is being performed.

The intensity registers are extended to this precision, and there is an extended intensity increment
register, which contains only the 11.16 bit intensity increment. Note that if the extended intensity
increment register is used, the old intensity increment register should be initialised to zero once.

The extended precision intensity is not saturated when the addition of the increment is performed, the
saturation is performed when the data is output. Saturation treats the 11 bit intensity value as a signed
number, and if it is negative outputs zero, otherwise if it is greater than 255 it outputs 255. If overflow of
the 11 bit value occurs then errors may occur, but this should not happen in normal operation. 11 bits was
chosen as the precision as the most extreme case possible is drawing a two-pixel wide strip of a polygon,
where the two pixels straddle a phrase boundary, as shown below:

phrase 1 phrase 2

polygon strip

intensity values| -765 | -510 |-255 [0] 255 | [[|

initial values
polygon strip

| 1020 [765 [510 [255 [o | | | |

initial values

The requirement in this situation is for the data initialiser to be able to set up appropriate intensity values
on the left-most pixel value of the first phrase, so that when the intensity increment is added the correct
value is present in the left-most pixel of the second phrase.

Note that there is not an equivalent extension to the range of the Z buffer values, and if your program has
to deal with the sort of cases shown above for intensity for Z as well, then you will have to reduce the
precision of the Z used to prevent overflow or underflow occurring in the initialisation process.

Polygon Control Flags

The main control flag for polygon drawing is the POLYGON control flag in the blitter command register.
When this is set the following functions are enabled:

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 64 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

¢ The Al step delta fractional parts are added to the Al step fraction values in the A1 update fraction
cycle between passes through the inner loop. This requires the UPDALF flag to be set.

*« The Al step delta values are added to the Al step values in the Al update cycle between passes
through the inner loop. This requires the UPDAL flag to be set. If the UPDALF flag is set carry occurs
from the fraction to the integer parts as required.

« Theinner counter reload value is modified by the inner counter delta value on each pass through the
inner loop. This requires both the UPDA1 and UPDALF flags to be set for correct operation. To avoid
a potential rounding error, the fractional part of the A1 X pointer is added to the inner loop reload
value before it is loaded into the inner counter itself.

« Theland Z values are modified in the outer loop. See the discussion of the outer loop states under
“Controlling State Machines” above.

You will aimost always want to set the DATINIT function so that the | and Z values, and the texture X and
Y pointers, are initialised for each scan line from the step register, as discussed above.

The A1l step load function is also normally set for polygon operations, particularly in phrase mode. This
means that the Al step values define the start pixel for each scan line, and the Al step delta values
describe the gradient of the left hand side. Note that both the Al step value and the Al pointer should be
initialised with the first pixel address at the start of the blit under these circumstances.

Texture Mapping

Texture Mapping involves mapping from a bit-map image onto a surface which has been rendered in 3D.
It is used as a technique to make surfaces more “interesting” and realistic than just flat or Gouraud
shaded surfaces. It can be used to simply make surfaces textured, rough or grubby; or it may be used to
map a realistic appearance, e.g. brickwork on a wall, or rivets on a ship.

The texture must be mapped onto the surface so that it always appears in the same position on an object
as the object moves in 3D. This requires rotation, scaling, skewing and perspective transformation. The
first three functions transform a linear traverse across the target (i.e. one polygon scan line) into a linear
traverse across the source image. Unfortunately, the perspective transform does not, and would require a
divide at each pixel, so is therefore not feasible within the blitter. The distortions due to not performing the
perspective transform properly are not particularly objectionable, and can be reduced by sub-dividing a
polygon into smaller pieces.

Memory Considerations

Texture mapping on the original Jaguar system was fastest when done with both the source and
destination in DRAM. However, as it had to be done pixel by pixel, it used the DRAM in pretty well the
worst way imaginable. Because the source and destination lay in different DRAM banks, a row address
overhead was performed for each read and write.

Midsummer is capable of texture mapping from internal memory. A texture generation unit computes four
X and Y pairs for a phrase, in much the same way as it currently computes | and Z values. This can fetch
values from internal memory in parallel with external bus activity. If the texture is duplicated in internal
memory, then it can perform two fetches per clock cycle, so that the blitter can do texture-mapped write
cycles at the maximum bus rate, i.e. a phrase of texture mapped pixels every two clock cycles.

However, the internal memory resource is severely limited in size. The blitter can therefore also perform
these texture fetches out of external DRAM. Again this can now be performed a phrase at a time, but as
the four source pixels are not contiguous, four reads are required for each write cycle. However, these will
not necessarily all incur the row address overhead, because if they all lie in the same DRAM page, then
only the first read will incur the overhead. At the time this document was written, all current systems have
2048 byte pages, so that if the whole texture is this small then four arbitrary pixels will always lie in the
same page. However, even if the source texture is larger than this, it is likely that most of the time the four
pixels will be sufficiently local to each other to lie in the same page.

Let us examine how long texture mapping takes. On Jaguar One, to texture map four 16 bit pixels took:
4 x (row change + source read + read to write delay + row change + destination write)
whichis 4x(3+2+1+3 +2)=44clock cycles

On Midsummer, texture mapping four 16 bit pixels when all four source pixels lie in the same DRAM
bank, which will the typical case, takes:

row change + (4 x source read) + read to write delay + row change + destination write
whichis 3+ (4x2)+1+3+2=17 clock cycles

The very worst case is if every fetch causes a row change O this will be exceptional, and this takes:

4 x (row change + source read) + read to write delay + row change + destination write
whichis 4x(3+2)+1+3+2=29clock cycles

Texture mapping from internal RAM will be four clock cycles per destination write of four pixels, with the
texture duplicated in internal RAM it takes two clock cycles per four pixels.

Clearly texture mapping from internal texture memory is very attractive, but the restrictions on internal
memory size, will mean that it will not always be possible. You may wish to consider blitting each texture
into internal memory before they use it. Certainly this will be worthwhile if the texture is used several times
over.

Note that the blitter will perform one texture source data read for each destination pixel. If the texture is
being significantly expanded then there will be a significant inefficiency here as the same source pixel is
repeatedly re-read. This overhead will be far less significant for on-chip textures, and it may well prove
worth-while to transfer some textures into internal RAM before using them to avoid this overhead.

Anti-Aliased Texture Mapping

Aliasing is a major quality problem on texture mapped surfaces. When they are expanded, the squares

that make up the source pixels become very obvious. When the texture is compressed, bright spots can

twinkle as the texture is moved or scaled, depending on whether or not they are sampled. The blitter

implements a mode where anti-aliasing is performed over a two pixel by two pixel square. This helps a lot

with the scaling up problem, and helps to some extent with the scaling down problem, although if the

scaling down factor is more than about two, then some twinkling will still occur.

To anti-alias the texture, the blitter must read four source pixels, thus:

|

Clxy+1) | D] (erly+1)

|
|

J By, |

B (x+1y)

In this diagram, the point (x.fx,y.fy) is the target pixel address transformed back into source address
space. The x and y parts are the integer part of the address, and the fx and fy parts are the fractional part
of the address. Anti-aliasing is performed by taking a weighted average of the four surrounding pixels,
designated A, B, C and D. The averaging function linearly interpolates between the corner values. The
function is:

F(x,fx,y.fy) = (1-fy).((1-fx).A + x.B) + fy.((1-fx).C + fx.D)

This function has to be performed on the intensity and C and R vectors of CRY pixels, and on each of R,
G and B vectors for RGB pixels. The blitter only supports this function for CRY and RGB16 pixels.

The blitter anti-alias unit performs the two subtracts necessary to give the weighting factors, and then
performs the six multiplies and three adds for each of the three pixel vectors. This adds an extra clock
cycle to each texture generation transfer, and the unit produces one pixel at a time instead of phrase at a
time as four source reads are required per pixel, instead of one.

Texture mapping one anti-aliased pixel when all four source pixels lie in the same DRAM bank takes:

row change + (4 x source read) + anti-alias + read to write delay + row change + destination
write

whichis 3+ (4x2)+1+1+3+2=18clock cycles per pixel

Texture mapping from internal RAM will be five clock cycles per pixel, with the texture duplicated in
internal RAM it takes three clock cycles per pixel.

The INTERP bit has to be set in the extended command register to enable this function, and the
TEXTRGB bit controls how the pixels are split up for the interpolation function. The destination address
pointer should be set into 16 bit pixel mode, i.e. not in phrase mode.

Texture address unit O is the address of the bottom left pixel (A), and it is the fractional part of its address
which is used to give the weighting factors. Texture address 1 is bottom right (B), 2 is top left (C), and 3 is
top right (D). The data initialisation unit whose function is enabled by DATINIT knows about this
functionality, and if both DATINIT and INTERP are set it will initialise address 0 to the step value, 1 to the
step value with 1 added to the X address, and so on.

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 65

An interesting point: the interpolation unit could also be used to perform cross-fades between up to four
pictures, by pointing the four texture X,Y pairs at each of the pictures, and using the fractional part of
pointer 0 to control the relative levels. In this mode the pointers will have to be initialised manually and the
DATINIT function cannot be used.

Texture Data

The texture map unit can fetch texture data from either internal or external memory. Texture addressing is
more limited than general blitter addressing from the A1 and A2 address generators. Textures must be 2"
by 2™ pixels, for a restricted range of n and m. In addition, the texture must lie on a 2" times 2™ boundary.
Texture may be either 4 or 16 bits per pixel, and 4 bit-per-pixel textures are mapped to 16 bits by a colour
look-up table within the blitter; so that all texture operations are performed at 16 bits per pixel.

Textures may be fetched from on-chip memory at the rate of one read per clock cycle, and this happens
at the same time as external writes. If the texture data is duplicated in internal memory then two reads
may occur per clock cycle, so that the blitter can generate texture data at the full write bus rate, i.e. one
phrase per two clock cycles. If only one texture copy is available then this operation runs at half speed.
There is no benefit in duplicating textures in external memory.

Internal texture RAM consist of two blocks of 1K x 32 RAM, into which pixels are packed. This RAM is
shared with the GPU.

Textures can be from 32 to 2048 pixels in either dimension, either in 4 or 16 bits per pixel mode. Textures
therefore range from 512 bytes, for a 32 x 32 4 bit texture to 8 Megabytes for a 2048 x 2048 16 bit texture.
The latter may have limited applications! There is no restriction that textures have to be square.

Where double textures are being used in internal RAM, they have to be 4096 bytes apart. Double textures
may only have a width and height of 32 or 64 pixels, they may be either 4 or 16 bits per pixel, but 64 x 64
16 bit per pixel textures may not be doubled because they are just too damn big.
Textures may be mirrored as they wrap. This function is enabled when the TEXTMIR bit is set in the
extended command register. This means that textures will appear to tile even if they were not set up to do
s0, thus (for simplicity, a texture smaller than is possible in the blitter is shown here):

Texture Wrapping without TEXTMIR Wrapping with TEXTMIR

The blitter uses the texture pointer bit immediately above the most significant bit being used for address
generation as the control bit for this function. For example, if the texture is 256 pixels wide, then if bit 8 of
the texture X pointer is set the two’s complement of the X pointer is used for address generation. This
occurs for both X and Y pointers, will work for either internal or external textures, with 4 or 16 bit texture

data, and will work for doubled internal textures too. The only restriction is that if either dimension of the
texture is 2048 pixels, then the texture will not wrap in that dimension.

Note that the pixels at the mirrored edges are repeated.

Shading Textures

The data from the texture unit may be combined with the pattern data register to allow Gouraud shading
to be combined with texture data. The extended intensity field is saturated, and used as a weighting factor
to mix the texture data with the contents of the blitter color register. Full intensity corresponds to maximum
weighting to the color register.

This allows the blitter a range of useful effects:
« darken or lighten textures by mixing with black or white
« adding fog and distance haze effects by mixing with grey or blue-grey

« color wash type effects, such as “red mist” by mixing with another colour

All these may be smoothly varied over a strip or polygon by setting up the Gouraud shade mechanism
appropriately. The function uses multipliers to perform the mixing properly, it is

F(x) = (1-Iv).x + Iv.Cv

where Iv is the intensity value, x the input pixel value, an Cv the contents of the colour register. It can be
used with either CRY or RGB pixels, by setting the TEXTRGB control bit appropriately.

Two control bits, PDSELO0-1, control what is generated when PATDSEL is set. The output may be pattern
data, as on Jaguar One, the texture data directly, the extended precision intensity pattern data with
saturation applied, or the weighted mix data as described above.

The inputs to the multiplicative mixer may be selected from a range of sources. This discussed further
above under the section on the Data Path, and allows a range of functions including:

¢ mixing texture data with a background color using the computed intensity to control the mix

« multiplicative Gouraud shading by mixing two colours, the texture data and the color register,
according to the computed intensity. This allows shading in CRY or RGB16 modes, and offers a
choice between shading to black or shading to white.

« translucent or anti-aliased edge texture mapping by mixing texture with the destination, with the
source data providing a mix map.

* mixing two images from the source and destination fields, using the static intensity to control the mix.

« computed translucency, mixing the texture data with the destination according to the computed
intensity.

Texture Read Operation

Texture operation is controlled by a simple state machine:

IGOT_TXT
GOT_TXT./INTERP. TXT_GO

IGOT_TXT

GOT_TXT.
TEXTDBL

IGOT_TXT
TXT_GO

GOT_TXT

GOT_TXT ./TEXTDBL

GOT_TXT ¢/
TEXTDBL .
/INTERP..
TXT_GO

IGOT_TXT

The states have the following functions:

idle No action is performed

textrd0 Read from (X0,Y0), and from (X1,Y1) if TEXTDBL is true.

textrdl Read from (X1,Y1) if TEXTDBL is false, or from (X2,Y2) and (X3,Y3) if TEXTDBL is true.

textrd2 Read from (X2,Y2).

textrd3 Read from (X3,Y3).

interpol Interpolate between the four read pixel values, using the fractional parts of the (X0,Y0)
pointer.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 66 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

The texture read states will normally complete in one clock cycle when fetching from internal memory.
The interpolation state will always complete in one clock cycle.

Built In Textures

Oberon has five textures built into ROM:

Name Firstimage | Second image
Metalica F06000 F07000
Dirt F06200 F07200
Clouds F06400 F07400
Cement F06600 F07600
Grass F06800 F07800

The Cement, Clouds. Dirt and Metalica textures are 32 by 32 pixels. The Grass texture is 64 x 64. These
are all four bit-per-pixel textures, so the appearance of them can be altered completely by modifying the
blitter CLUT before texture mapping them. This will allow them to be re-used many times without looking
the same each time.

The texture ROM is duplicated, so that TEXTMODE can be set to 3 when using them, for duplicated
internal texture data. This can double the draw rate from them.

The names are not indicative of how the textures should be used, any of them could perform just about
any of the functions described with a suitable palette of colours. You can get the source Targa files from
Atari.

The CLUT values for these textures as originally encoded were:
metalica: 8869, 8776, 9764, 9788, 9797, 974E, A663, A77A,
A678, 87A9, 977B, A78E, 87Al, 8789, 979A, CB5A
dirt: D567, D577, (553, B53B, E5CL, DG6SE, DS8E, ESBL,
E5A2, D6AF, D5DE, E6F3, E6DD, E6C8, E6El, E673
clouds: 56BD, 5606, 66D2, 66DE, 66D5, 6606, 66CF, 4608,
56CE, 56CD, 46BE, 67DB
cement: 778C, 7787, 77A9, 7796, 7771, 777B, 775A, 7758,
7765, 779C, 77A5, 764D, 77B8, 77AD, 77BD, 77CA
grass: BA76, AAGD, BASB, 9A66, A957, 8955, BAAE, 9947,
B96F, BA9C, A978, BAJF, AA85, BASD, 9A86, BAB2
These values are 16-bit CRY colors expressed in hex. (Clouds only uses 12 colors.)

Remember that you can use any CLUT you like with these textures, so you can darken or lighten them,
change their hue, change their contrast, remove any color variation, use them in 16-bit RGB mode, or any
other change you like. This means that you can use these textures without them looking the same as
anyone else’s use of them.

Puck

“First rehearse your song by rote,
To each word a warbling note.
Hand in hand with fairy grace

Will we sing and bless this place.”

ActV, Scene 1

Puck is the companion chip to Oberon in the Jaguar games console, and is provides two J-RISC
processors and some interface functions. These are:

° A J-RISC processor (DSP) principally intended for sound synthesis.

o A J-RISC processor (RCPU) intended to act as the main system processor.

i Frequency dividers for clock synthesis.

i Two programmable timers.

° Synchronous serial interface and baud rate generator (IZS).

i Asynchronous serial interface and baud rate generator (ComLynXx).

o Joystick interface decodes

o Six general purpose 10 decodes

Puck occupies a 64K byte slot in Jaguar's address space. It appears as a 16 bit port (as does all I0). The
DSP however is a 32 bit processor so all transfers to the DSP are done in pairs.

Memory Controller

The memory controller in Puck allows the RISC processors to access 64 bit memory at the maximum bus
rate. In order to do this with the best possible efficiency some of the Oberon functions are duplicated in
Puck, to obtain the speed benefits of doing this control locally. The Puck memory controller registers
must be programmed to match the MEMCON registers in Oberon at all times or failure will occur. The
MEMCON1-2 and MEMCONP1-2 registers have the same respective bit positions, so the same data may
be written to both.

PUCK_MEMC1 Puck Memory Configuration Register One F10040 WO

Bit 0 ROMHI When set the two ROM decodes address the top 8M within the
16M window. When clear the ROM decodes address the bottom
8M. This document assumes throughout that ROMHI is set when

discussing register addresses.

Bits 1,2 ROMWIDTH Specifies the width of ROM:
0 8 hits

1 16 bits

2 32bits

3 64 bits

Bits 3-15 unused must be set to match MEMCONL1.

All the above bits are undefined on reset and must be programmed to match MEMCON1.

PUCK_MEMC2 Puck Memory Configuration Register Two F10042 WO

Bits 0,1 unused must be set to match MEMCON?2.

Bits 2,3 DWIDTHO Specifies the width of DRAMO
0 8 hits

1 16 bits

2 32bits

3 64 bits

Bits 4,5 unused must be set to match MEMCON2.

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 67

Bits 6,7 DWIDTH1 Specifies the width of DRAM1
0 8 bits

1 16 bits

2 32bits

3 64 bits

Bits 8-11 unused must be set to match MEMCON2.

Bit 12 BIGEND Specifies that big-endian addressing should be used. This
determines the address of a byte within a phrase and allows
Jaguar to be used comfortably with Big-endian (Motorola)

processors or with Little-endian (Intel) processors.

Where PLL synthesis is used this register is typically left as reset. This provides the lowest reference
frequency for generating PCLK and VCLK.

For non-PLL synthesis the chroma crystal is some small multiple of the chroma carrier and this frequency
is used as the video clock. This register is written with the appropriate number to generate the chroma
frequency on the CHRDIV pin and bit 15 is set to enable the crystal frequency onto the VCLK pin.

Programmable Timers

Bit 13-15 unused must be set to match MEMCON2.

All the above bits are undefined on and must be programmed to match MEMCON2.

Frequency dividers

Puck is responsible for the synthesis of the system clocks. These are:

This is 4.43 MHz for PAL and 3.58 MHz for NTSC and should have a 50% duty
cycle. The color encoder may require 4x this clock.

Video clock. This is a multiple of the pixel clock (which is typically between 6 MHz and 12

MHz) and must be fixed relative to the chroma clock in order to avoid the "dot-
crawl effect” on TVs.

Chroma clock.

Processor clock. This determines the speed of the memory interface, the graphics processor, the
object processor and the digital sound processor. This clock is divided by two to
provide a clock for an external processor.

CPU clock This is the clock for the 68000 CPU.

Clocks are generated by two free-running crystal oscillators, and by one voltage-controlled crystal
oscillator (VCXO). The two free running crystals provide 26.6 Mhz, the same as Jaguar One; and a new
frequency for Jaguar Two, probably in the range 30-35 Mhz. This is yet to be defined. The VCXO runs at
four times the color sub-carrier, and gives the chroma clock.

11 - more information required on the new clocking control.

CLK1 Processor clock divider F10010 WO

This register is only used if the processor clock is generated by PLL. This ten bit register determines the
frequency ratio between the processor clock oscillator input (PCLKOSC) and the processor clock divider
output (PCLKDIV). In PLL clock synthesis PCLKDIV is typically locked to CHRDIV so the processor clock
frequency will be

(N + 1) * CHRDIV

where N is the value written to this register. This register is initialised to one on reset. The PCLKDIV
output produces a pulse every N + 1 PCLKOSC cycles.

CLK2 Video clock divider F10012 WO

This register is only used if the processor clock is generated by PLL. This ten bit register determines the
frequency ratio between the video clock (VCLK) and the video clock divider output (VCLKDIV). As before
in PLL clock synthesis VCLKDIV is typically locked to CHRDIV so the video clock frequency will be

(N + 1) * CHRDIV

where N is the value written to this register. This register is initialised to zero on reset. The VCLKDIV
output produces a pulse every N + 1 VCLK cycles.

CLK3 Chroma clock divider F10014 WO

This six bit register determines the frequency ratio between the chroma oscillator (CHRIN, CHROUT) and
the chroma clock divider output (CHRDIV). The divider divides the chroma oscillator frequency by N + 1
where N is the value written to the register. The CHRDIV output has a 50% duty cycle. This register is
initialised to 3Fh (divide by 64) on reset.

The most significant bit of this register enables the chroma oscillator onto the VCLK pin. This bit is clear
on reset (output disabled).

Puck contains two identical timers. Each consists of two sixteen bit dividers. The first stage (loosely called
the pre-scaler) divides the processor clock by N + 1. The second stage divides this frequency by M+1,
where N and M are the values written to their associated registers. It is therefore possible to achieve
frequency division in the range four to four billion.

The outputs of the second stages may be used to interrupt either of the digital sound processor or the
external microprocessor.

It is intended that timer one is used to generate the sample rate frequency for sound synthesis and that
timer two is used to generate a music tempo frequency. The timers may however be used for other
purposes. It should be noted that writing to the associated registers presets the counters so they could be
used to provide programmable delays. Also the registers are readable which can be used to measure
time accurately. This might be used in development to help profile code or to help measure the time
between joystick events.

There are four registers associated with the timers. The read addresses are different to the write
addresses.

JPIT1 Timer 1 Pre-scaler F10000 WO
F10036 RO
JPIT3 Timer 2 Pre-scaler F10004 WO
F1003A RO

The pre-scalers divide the processor clock by N + 1 where N is the 16 bit value written to them. The pre-
scalers are down counters which are loaded when the register is written and when they reach zero. They
are readable, but this is really for chip test purposes as they can change while they are being read O they
might be used by the DSP to measure short events with precision.

JPIT2 Timer 1 Divider F10002 WO
F10038 RO
JPIT4 Timer 2 Divider F10006 WO
F1003C RO

These dividers divide the output from the corresponding pre-scalers by N+ 1 where N is the 16 bit value
written to them. The dividers, like the pre-scalers, are down counters which are loaded when the register
is written and when they reach zero.

When they reach zero they may interrupt either of the DSP or the CPU. These interrupts are
independently maskable.

Interrupts

There are seven interrupt sources which may interrupt the external microprocessor. The interrupt sources
are as follows:

i External A rising edge on the EINT[0] input to Puck may cause an interrupt.

i DSP The DSP may generate an interrupt by writing to a port.

i Timers Both timers may generate interrupts.

i Sync. The synchronous serial interface can generate interrupts as described below.
i UART The asynchronous serial interface can generate interrupts as described below.
i RCPU The RCPU may generate an interrupt by writing to a port.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 68 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

It is likely that only one or two interrupt sources would normally be directed at the microprocessor. Some
of the above are mainly of relevance to the DSP in sound synthesis. The Interrupt control register
enables, identifies and acknowledges CPU interrupts from the six different interrupt sources.

RXD input receive data from CD-ROM (expansion bus) or DSP connector
SCK input/output | serial clock output to DAC; input from or output to DSP connector
WS input/output | input from or output to DSP connector

QWS output word strobe output to DAC (muted version of WS)

SCK2 input serial clock input from CD-ROM (expansion bus)

WS2 input word strobe input from CD-ROM (expansion bus)

Diagrams below show how these are configured in operation.

Synchronous Serial Receiver / Transmitter

PUCK_INTC Interrupt Control Register F10020 WO
Bit Name Description
0 EXT_ENA Enable external interrupt O.
1 DSP_ENA Enable interrupts from the DSP
2 TIMO_ENA Enable Timer One interrupts (sample rate)
3 TIM1_ENA Enable Timer Two interrupts (tempo)
4 ASI_ENA Enable Asynchronous Serial Interface interrupts
5 SSI_ENA Enable Synchronous Serial Interface interrupts
6 RCPU_ENA Enable interrupts from the RCPU
8 EXT_CLR Clear external interrupt 0.
9 DSP_CLR Clear the DSP interrupt
10 TIMO_CLR Clear Timer One interrupt
11 TIM1_CLR Clear Timer Two interrupt
12 ASI_CLR Clear the Asynchronous Serial Interface interrupts
13 SSI_CLR Clear the Synchronous Serial Interface interrupts
14 RCPU_CLR Clear the RCPU interrupt
PUCK_INTS Interrupt Status Register F10020 RO
This register allows a processor to determine which interrupt is pending.
Bit Name Description
0 EXT_INT External interrupt O
1 DSP_INT DSP interrupt
2 TIMO_INT Timer One interrupt
3 TIM1_INT Timer Two interrupt
4 ASI_INT Asynchronous Serial Interface interrupt
5 SSI_INT Synchronous Serial Interface interrupt
6 RCPU_INT RCPU interrupt

Synchronous Serial Interface

The synchronous serial interface in Puck is the interface to the audio digital to analogue converters, and
is also the interface to the serial data stream from the CD-ROM drive. These two functions may be tied
together, for instance when playing red book audio; or they may be quite separate. The data from the CD
is also available from a memory mapped FIFO. This is described elsewhere (it is part of the Butch device
in the Jaguar One CD-ROM).

The interface has two major components; a synchronous receiver/transmitter within the DSP memory
area; and a CD DMA controller which is a stand-alone bus master.

The synchronous receiver/transmitter was also present in Jaguar One. It is the synchronous equivalent of
a UART, and its main function is to transmit audio data to the DAC (digital-to-analogue converter). It can
also receive the data from the CD. The CD DMA controller is new for Midsummer. It is described below
on page 8.

A synchronous serial interface, as implemented here, consists of four wires: receive data, transmit data,
serial clock and word strobe. The serial clock and word strobe are generated by the bus master of the
interface, and define the bit rate and data framing on the two data lines. Puck can be either a master or a
slave to the serial interface connected to the DAC and DSP connector, but can only be a slave to the CD-
ROM (expansion bus). It is not possible to be a bus slave on the expansion bus (unlike Jaguar One).

The control of these lines is described in greater detail below. Puck has effectively two synchronous serial
interfaces, so that data may be transferred from the CD and to the DAC simultaneously, without requiring
both to use the same bit rate and word alignment.

The pins provided are as follows:

Name Function Description
TXD output transmit data to DAC and DSP connector

The interface can work in two modes. The first, called mode16, is compatible with 12S and has a sixteen
bit word length. The start of left and right words are marked by transitions in word strobe. Interrupts are
generated on the rising edge of word strobe. The second mode, called mode32, allows longer packets of
data to be communicated. In this mode a rising edge on word strobe synchronises the system which
continues to receive/transmit 32 bit words. Interrupts are generated every 32 bits. Mode 32 is not used
within the Jaguar console.

Model6

|
|
|
|
Word strobe / !
|
|
|
|
|
|

Data 1 Y o Y 15 ¥ 1 Y 13 Y

left data Il right data | L left data

Note
° The word strobe precedes the data by one bit.

° The word strobe and transmit data are clocked by the negative edge of the clock to provide the
maximum set-up and hold time in the receiver/slave.

i Data and word strobe inputs are sampled on the rising edge of the clock.

° The data is sent transmitted MSB first. If the interval between word strobe transitions is greater than
16 bits the transmitter sends zeroes after the LSB and the receiver ignores them. If the interval is
less than 16 bits the receiver sets the missing bits to zero.

° The diagram is the same whether the timing is generated internally or externally but Puck only
produces word strobes 16 bits in length.

Mode32

|
|
|
|
Word strobu \ \ \ \ :
|
|
|
|
|

Data 1 Y o Y m Y 30 Y 29 Y

Note

i Only the rising edge of the word strobe is significant

i Outputs change on the falling edge of the clock, and inputs are latched on the rising edge.
i 32 bit words continue to be received / transmitted until the next rising edge of word strobe.

The synchronous serial interface is controlled by seven registers. These are all within the local address
space of the DSP, and so may be accessed by the DSP without any external bus overhead. Other
processors may access them at these addresses. All transfers to them should be 32 bit, but the registers

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 69

themselves are only 16 bit. The addresses given are therefore a big-endian view of their position in the
memory map.

SCLK Serial Clock Frequency F1A150 WO

This eight bit register determines the frequency of the internally generated serial clock. The frequency is
given by:

Serial Clock Frequency = System Clock Frequency / (2 * (N+1))
where N is the number written to this register.

SMODE Serial Mode F1A154 WO

CD DMA Controller

Bit 0 INTERNAL When set this bit enables the serial clock and word strobe outputs.

Bit 1 MODE When set this bit selects MODE32.

Bit 2 WSEN This bit enables the generation of word strobe pulses. When set PUCK

of a packet of long-words in MODE32.

produces a word strobe output which is alternately high for 16 clock cycles
and low for 16 clock cycles. When cleared Puck will not generate further high
pulses. This can be used by software to generate one word strobe at the start

Bit 3 RISING Enables interrupts on the rising edge of word strobe.

Bit 4 FALLING Enables interrupts on the falling edge of word strobe.

Bit5 EVERYWORD Enables interrupts on the MSB of every word transmitted or received.
LTXD Left transmit data F1A148 WO
RTXD Right transmit data F1A14C WO

These two sixteen bit registers hold data to be transmitted.

In MODE16 the right data is transferred to a shift register following the rising edge of word strobe and the
left data is transferred following the falling edge of word strobe.

In MODE32 the left data (most significant) is transferred first after the rising edge of word strobe (and
every 32 clocks later), the right data is transferred 16 clocks after the left data.

In either mode the registers may only be updated when the previous contents have been transferred to
the shift register.

LRXD Left receive data F1A148 RO
RRXD Right receive data F1A14C RO

These two sixteen bit registers hold received data.

In MODE16 the right data is transferred from the shift register to the register following the falling edge of
word strobe and the left data is transferred following the rising edge.

In MODE32 the left data (most significant) is transferred from the receive shift register to the left register
16 clocks after the rising edge of word strobe (and every 32 clocks later). The right data is transferred 16
clocks after the left data.

SSTAT Serial Status F1A150 RO

The CD DMA controller is new for Midsummer. It is intended to allow the CD to be used as a data storage
medium with a minimal system overhead for data transfer.

Overview

The original Jaguar 1 I°S interface provided simple 32-bit I/O registers, requiring considerable processor
overhead both to receive data from the CD and to transmit audio to the DAC. Midsummer improves this
reception of data from the CD-ROM.

Two extra pins (SCK2 and WS2) allow the receive and transmit functions to operate completely
independently, and the CD DMA controller can receive double-speed CD data, recognise partition
markers then fill a circular buffer, all without processor overhead, using less than 0.4% of the main bus
bandwidth.

The controller functions in a similar way to the pattern-matching and data-transfer parts of the CD-BIOS
cd_initm/cd_read calls, and indeed these calls can be enhanced to use this mechanism. Management of
the CD mechanism, including error-detection, remains a software function.

How it works

A 32-deep FIFO accumulates longs as they arrive from the IS receiver. A pattern-recogniser searches
these longs for a string of matching values (CD_PAT determines the value and PAT_LEN the number of
longs). Once the pattern is seen, the recogniser stops taking longs from the FIFO, which starts to fill up.
Once the FIFO has filled to a programmable ‘high-tide’ mark, the DMA controller acquires the bus and
burst-writes phrases (supplied by the Pairer) to memory until the FIFO is empty. The FIFO then starts to
fill-up again and the process repeats.

The first and last phrases written are masked internally if necessary, to allow long-alignment of the start
and end points.

Bit 0 WS This bit reflects the state of the Word Strobe pin in order for software to
determine which data is being received. Do not use this signal for reading

input data. Read the interrupt control register instead.

Bit 1 Left In MODE32 it is not necessary for the Word Strobe to be toggled every 16
bits. An internal counter keeps track and this bit may be used as an
alternative to WS to determine which word is currently being transmitted or

received.

Pattern
- Recognizer
- Serial To 32x32 . Match
Parallel 3 FIFO |32 M ¥
RxD r ;
T Pairer N DMA N External
. 64 64| Memory
Left/Right level .o ... I
RXD
CD_CTRL CD DMA Control Register F10080 WO
Cleared on reset.
Bit Name Description
0-4 HIGH_TIDE Write a value between 3 and 30.
When running, the CD DMA will empty the FIFO whenever it
contains more than this many longs (i.e. LEVEL>HIGH_TIDE).
Too-low a value will cause the DMA to acquire the bus often and
inefficiently transfer only a few values.
Too-high a value will cause the FIFO to overflow if the DMA cannot
acquire the bus quickly (because a higher-priority bus-master is
active).
5-10 PAT_LEN Write a value between 0 and 63.

The number of longs required in the partition-marker pattern. DMA
will commence after this number of longs have been recognised.
Set to zero to disable pattern-recognition.

11 CD_BIGPHR Controls the ‘endianness’ with which DMA stores incoming longs in
phrases. If true, the first long is stored in phrase bits [63:31].
Set true for Jaguar.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 70 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
12 CD_BIGLNG Controls the ‘endianness’ with which incoming left/right words from 0 CD_RUN A write to this register with this bit set clears the DMA controller then
the I°S interface are packed into long. If true, the first word is stored enables it.
in long bits[31:16]. 1 CD_STOP A write to this register with this bit set disables the DMA controller
Set false for Jaguar. 2-15 unused Write zero.
13 HI_PRI Causes CD DMA to request the bus with high priority
14 CD_LXFER Determines which word in each received pair of words is considered CD PATH F1008C RW
the ‘second’, and thus the one that causes the pair to be transferred -
into the CD DMA controller. High word (bits 31..16) of pattern-recogniser long.
Clearing this bit means ‘transfer on right’, i.e. incoming words are in
‘left,right’ pairs (usually the case). CD PATL F1008E RW
Setting this bit means ‘transfer on left’, i.e. incoming words are in -
‘right,left’ pairs. Low word (bits 15..0) of pattern-recogniser long.
15 unused Write zero.
CD_STAT CD DMA Status F10080 RO CD_STARTH F10090 RW
_ — Bit Description
Bit Name Description 0-7 High word (bits 23..16) of CD DMA controller start address. Once pattern is recognised,
0-4 LEVEL Number of longs in the FIFO. Zeroed by ‘CD_RUN’ command. longs will be written to memory from this address.
5 MATCH If true, pattern-matching is complete and DMA is active. 8-15 Read/Write zero.
Cleared by ‘CD_RUN’ command unless PAT_LEN is zero.
6 OVERFLOW Indicates that FIFO has overflowed since last ‘CD_RUN’ command. CD STARTL F10092 RW
A higher-priority bus-master is hogging the bus for too long. -
HIGH_TIDE may need to be reduced. Bit Description
7 FINISHED DMA has reached the end address and stopped. 0-1 Read/Write zero.
Cleared by ‘CD_RUN’ command. 2-15 Low word (bits 15..2) of CD DMA controller start address (long-aligned).
8-15 unused Zero.
CD_ENDH F10094 RwW
CD_FLOW F10084 WO —
. Bit Description
See the ‘Data Flow’ section below. 0-7 High word (bits 23..16) of CD DMA controller end address. DMA will continue to this
Cleared on reset. address, then stop and the ‘FINISH’ bit will be asserted. To continue forever, set this
- — address outside the range of the address mask.
Bit Name Description 515 Read/Write ze10
0 CD_ENHANCED | When clear, bits 1,2,3 in this register are controlled by the -
INTERNAL bit in the SMODE register, ensuring compatibility with
Jaguart CD_ENDL F10096 RW
Set to control these bits directly. Bit Description
1 CD_I2SCK2EN Determines source of internal SCK and WS. o1 Read/Write zero.
2 ;g: }:SLJ?}?(;nmaltrileoékDgoer?EE;?;CK2,WSZ. 2-15 Low word (bits 15..2) of CD DMA controller end address (long-aligned).
If CD_ENHANCED is clear, this bit is 'INTERNAL.
Rega?dless of the state of this bit, the WS interrupts controlled by CD—MASK F10098 RW
the_SMODIfE regisﬁer, and th_evfltgte olf WS read in the SSTAT Bit Deseription
register, refer to the transmit only. - — -
2 CD_I2SRX2EN Determin_es the source of LRXD,RRXD receive register timing. 0-4 _?;?E{SO??:SDKM?@L??;; :1 de dzhs/lsAi::\?\/rvz\syz ﬁg&f'gl'ggr't within a circular buffer.
(1)2:: :ESL:?}?;nmalt:ec(I:(Dagg \F/)Y:S SCK2 WS2. eg. If CDfMASK:B, bit 8 of the DMA current addr_ess will be held clear, so instead of
If CD ENHANCED is clear. this bit is'zero. |ncrement|ng from X_XX(_)FB to XXX100, address_wnl wrap-around to XXX000.
- — - The circular-buffer size is 2°P-**5 pytes, and aligned on a 2(P-"A5*) pyte houndary.
3 CD_I2SBYPASS | Determines the source of_serlal data out to the DAC on pin TXD. DMA transfers are phrase-aligned, so set this register to between 3 and 23.
0 for the LTXD,R'_FXD registers Set to 0 to disable. '
L for the CD on pin rxd. it 5-15 Read/Write zero
If CD_ENHANCED is clear, this bit is zero. -
4 CD_I2SOE Output-enable for SCK and WS pins.
Normally set to 1 (by boot ROM) to drive the DAC. CD—CURH F1009C RO
Must be clear to slave Puck to these pins. Bit Description
5 CD_I2SWSDEL If cIear,WS is delayed by one SCK (DAC data is F’h|l|ps format) 0-7 High word (bits 23..16) of CD DMA controller current transfer address. Note that this
If set, WS is not delayed by one SCK (DAC data is Sony format) may change between reading this register and CD_CURL.
6 CD_I2SWSINV If clear, WS is output high for left word, low for right (Philips format) 815 Zero
If set, WS is output low for left word, high for right (Sony format) -
7-15 unused Write zero. CD CURL E1009E RO
CD_ACTN F10088 WO Bit Description
[Bit | Name | Description | 0-2 Zero.
3-15 Low word (bits 15..3) of CD DMA controller current transfer address (phrase-aligned).
26 October, 2002 CONFIDENTIAL Aﬁﬁw& © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6 THIS DOCUMENT IS WORK IN PROGRESS

Page 71

CD FAKEH F1009C WO Frequently-used configurations are shown overleaf, with the corresponding CD_FLOW value (in these
- examples, the second nibble of CD_FLOW is assumed to be zero, although it could take other values).

Test only.
High word of ‘fake’ input long. See CD_FAKEL.

CD_FAKEL F1009E WO

Test only.

Low word of ‘fake’ input long. Writing to CD_FAKEH then CD_FAKEL inserts a long into the CD DMA
controller as if it had arrived from the 12S data stream.

Using the CD DMA controller

To use the CD DMA controller, the following registers must be set-up:
1)Write a ‘1’ to the CD_STOP bit to halt the controller (only necessary if the ‘FINISHED' bit is false)
2)Set CD_CTRL as desired (PAT=0 to disable pattern-recognition).
3)Set CD_START to a long-aligned address.
For a linear buffer:
4)Write 0 to CD_MASK to disable it
5)Set CD_END to a long-aligned address.
For a circular buffer:
4)Write suitable value to CD_MASK (see example below).
5)For endless loop, set CD_END outside the buffer, else to a long-aligned address within.
6)If using the pattern recogniser, write desired long to CD_PAT.
7)Write to CD_ATN with CD_RUN bit set.
8)Start the CD mechanism.

As data arrives from the CD-ROM, it is searched for the partition marker - a pattern of PAT_LEN longs of
value CD_PAT. Once this is found, subsequent longs are written to memory from CD_START. At any
time, the current address that the DMA is writing-to can be monitored by reading CD_CUR. Once the end
address is reached, the controller shuts-off and the ‘FINISHED’ bit becomes true.

Example

To read from a partition labelled with a pattern of sixteen ‘00000001’s, into a 128K circular-buffer at the
top of DRAM :

1)Write a ‘1’ to the CD_STOP bit.

2)We'll set HIGH_TIDE to half-way through the FIFO (16), PAT_LEN to 16, CD_BIGEND true and
low priority, so write $0A10 to CD_CTRL.

3)Write $001E0000 to CD_START.

4)We need to set the mask for a 128K circular buffer. This is 2" so write 17 to CD_MASK.
5)Write 00FFFFFC to CD_END (outside mask, so will loop forever).

6)Write 00000001 to CD_PAT.

7)Write 0001 to CD_ACTN to enable the controller.

8)Start the CD mechanism.

Data Flow

Jaguarl had a single I°S bus of which it could either be master (driving SCK and WS) or slave (receiving
SCK and WS). Both receive and transmit had to be clocked by the same source, so for example when
slaving to a double-speed CD ROM, the DAC had to be driven at 88200Hz - somewhat excessive!

Midsummer separates the receive and transmit functions onto two separate IS busses, allowing data to
be transmitted to the DAC at a different rate than it is received from CD and also allowing CD Audio disks
to be played directly to the DAC without processor involvement.

If the CD_ENHANCED bit in CD_FLOW is left clear after reset, the data path is controlled automatically
by the INTERNAL bit in the SMODE register, allowing Jaguar 1 compatibility. The only functionality lost
compared to Jaguarl is that peripherals on the Expansion bus can no longer be slaves. $0010 should be
written to CD_FLOW by the Boot ROM to enable SCK,WS as outputs.

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

N TN

CONFIDENTIAL

26 October, 2002

Page 72

THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

“Audio Out Compatible” Mode

No CD-ROM connected (or it is disabled). DAC driven by DSP. Puck is bus-master.

SMODE $0005
CD_FLOW $0000

(INTERNAL=1). Set SCLK for desired sample-rate.
(COMPATIBLE)

Puck
DSP CONNECTOR
CD DMA LRXD
el\vad rxd
RRXD
[1
0 1\ izsxen
[s sck2,
we2 ws2
DSP LTXD
—I 20 —|1\| txd
RTXD £’
SCKGEN i2stypass
1 0, i2sck2en
. sckout sck 12500
*_Q:m
interndl B~ XQWS
L
WSGEN

wsout

i2sck2en

mutel
i2swsinv

i2swsdel L

WS

i2s0e

WS "
e

internal

DAC

“CDROM In Audio Out Slaved Compatible” Mode

CDROM read via registers or CD DMA. DAC driven by DSP. CDROM is bus-master.
SMODE $0000 (INTERNAL=0)
CD_FLOW $0000 (COMPATIBLE)

Puck
DSP CONNECTOR
CD DMA LRXD
e||zn<u xd
RRXD
[T
0 1\ i2sxzen
[sk sck2
ws2 ws2,
DsP LTXD
S _Il\' g
RTXD -
i25bypess
i DAC
Lo sckout sck
_Qsckin p
internd
0~ XqQWS
1
WSGEN
muteL
i2swsinv i2swsdelL
1 of—izsdeen e
_an Q

internd

26 October, 2002

CONFIDENTIAL

A

ATARI

TR

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS

Page 73

“CDROM In Audio Out Independent” Mode

CDROM read via registers or CD DMA (CD is master). DAC driven by DSP (Puck is master). Input and

output are completely separate.
(INTERNAL=1). Set SCLK for desired sample-rate.

SMODE $0005
CD_FLOW $0005

“CD Audio Bypass” Mode

Audio from CD plays straight-through to DAC without CPU intervention. CD is bus-master of both buses.

Audio data can be read simultaneously via registers or CD DMA if desired.

SMODE $0005
CD_FLOW $000F

(INTERNAL=1).

3 2 1 0
CD_I2SBYPASS CD_I2SRX2EN CD_I2SCK2EN CD_ENHANCED
0 1 0 1
Puck
DSP CONNECTOR
CD DMA LRXD
) ™ Yiona rxd
[1
0 1\ i2sxen
[sx sck2
ws2 ws2
DSP LTXD ~ ixd
20d
RTXD 1 {0
SCKGEN i2eypess
1 of—izsckeen
L. sckout sck |/ 2
c|sckm p
internal
o~ xqws
WSGEN
mutel
i2swsiny i2swedelL
1 of—izsckeen
N ot ws L 2
—| wsin Q
internal

3 2 1 0
CD_I2SBYPASS CD_I2SRX2EN CD_I2SCK2EN CD_ENHANCED
1 1 1 1
Puck
DSP CONNECTOR
CD DMA LRXD
P [Jizoa xd
[T
0 1\ i2sxzen
[sk sck2
we2 ws2
DSP LTXD I\l xd
RTXD 1 e {0
i25bypess
i2we DAC
sckout sck
k [sckin
9
internd
0~ XqQWS
WSGEN
mutel
i2swsinv i2swsdelL
1 of—izsdeen
i2s0e

Clmsin

internd

© 1992, 1993, 1994

, 1995 ATARI Corp.

CONFIDENTIAL

26 October, 2002

Page 74 THIS DOCUMENT IS WORK IN PROGRESS Midsummer Technical Reference Manual — Revision 6
ASICTRL Asynchronous Serial Control F10032 WO

Bit Name Description
Network UART 0 ODD Writing a 1 to this bit selects odd parity

1 PAREN Parity enable. When parity is disabled the value of the ODD bit is
Puck contains a simple asynchronous serial UART intended as a serial network interface (like ComLynx) transmitted in the parity bit time.
or as a serial communications port (RS232 or MIDI). The serial interface consists of two wires, UARTI, the 2 TXOPOL Transmitter output polarity. Setting this bit to a one causes the
receive data input and UARTO the transmit data output. UARTO output to be active low.

A prescaler register is used to allow a wide range of programmable baud rates. The highest baud rate 3 RXIPOL Receiver input polarity. Writing a one to this bit makes the UARTI
possible is the system clock divided by thirty-two. into an inverting input.

. 4 TINTEN Enables transmitter interrupts. Note that the asynchronous serial
The da'ta t'ransmltter is double puﬁered, aIIOW|_ng a character to be wntteq mtq the data register before the interface bit in the Interrupt Control Register also needs to be set
transmission of a previously written character is complete. The data receiver is also double buffered, a

] A . to enable interrupts.
tsf(]eecc()jr;(tiacrrgrgg?r can be received on the UARTI pin before the previous character has been read from 5 RINTEN Enables receiver interrupts. As for TINTEN the asynchronous

serial interface bit in the Interrupt Control Register must also be

Data is transmitted and received in the formats shown below: set.
Normal transmit/receive format 6 CLRERR Clear Error. Writing a one to this bit clears any parity, framing or
overrun error condition.

14 TXBRK Transmit break. Setting this bit causes a break level to be
transmitted on the UARTO pin. It forces the UARTO output active.
This may be high or low depending on the state of the TXOPOL
bit.

|
|
|
|
|
I All unused bits are reserved and should be written 0
|

it I bit
|

ASISTAT Asynchronous Serial Status F10032 RO

Bit Name Description
0-5 These bits reflect the state of the corresponding bits in the
ASICTRL register.
7 RBF Receive buffer full. When set this bit indicates that a character has
been received and is available in the ASIDATA register.
8 TBE Transmit Buffer Empty.
9 PE Parity Error. This bit indicates that a parity error occurred on a
received character.
The parity can be ODD, EVEN or none. The polarity of both the output and the input can be programmed 10 FE Framing E_rror. A_"am"?g erroris dete_cted when a non zero
to be active high or low. The polarity shown is active low. The transmitter can be programmed to transmit character is received without a s_top bit at the expected time. -
11 OE Overrun Error. An overrun error is detected when a character is

a stop bit in the parity position, and the receiver can be programmed into not expecting a stop bit at all,

supporting the standard 8-bit, no parity, one stop bit format. received on the input before the last character was read from the

ASIDATA register.

Two classes of interrupt can be generated by the asynchronous serial interface, namely receiver or 13 SERIN Serial Input. This bit reflects the state of the UARTI pin. Its sense
_transmitte_r interr:ptls. Each of these classes can be individually enabled. The table below summarises the an be inve.rted by setting the FXIPOL bit in the AS|CT.R|_ e
interrupts in each class. 14 TXBRK Transmit Break. This bit reflects the state of the corresponding bit
Receiver Interrupts. in the ASICTRL register.
. Parity Error 15 ERROR Error. This bit is logical OR of the PE, FE and OE bits. This allows
. a single test for error conditions.
d Framing Error
b Overrun Error .
All unused bits are reserved and may return any value.

. Receive Buffer Full
Transmitter Interrupts ASIDATA Asynchronous Serial Data F10030 RW
i Transmit Buffer Em)) . .) s -

. .] Py o o . When this register is read it returns the last character received in bits [0..7] and zero in bits [8..15]. The
The UART is accessible either as part of the normal 16-bit IO interface, or within the RCPU internal act of reading this register clears the receive buffer full condition leaving the way clear for subsequent
space. If RCPU control of the UART is enabled, then the transmit and receive data buffers can be long characters to be received.

ords if required, reducing the overhead required for sending bursts of data. N
W rrequl ucing v qul ing bu When the ASIDATA register is written bits [0..7] are transmitted from the UARTO pin. Bits [8..15] are not

used and should be written as zero.

ASICLK Asynchronous Serial Interface Clock F10034 R/W

This sixteen bit register determines the baud rate at which the asynchronous serial interface works. The RCPU Extended UART Control F1813C Read/write

f ted is given by: I

requency generated Is given by This register supplements the ASICTRL register at F10032, and both registers must be initialised before
Clock Frequency = System Clock Frequency / (N+1) the UART is used.

where N is the number written to this register. [Bit | Name | Description

The frequency generated by this register is further divided by sixteen to give the baud rate.

26 October, 2002 CONFIDENTIAL A%ﬁw& © 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6

THIS DOCUMENT IS WORK IN PROGRESS Page 75

0 ERROR When read, this bit indicates that one of the error bits below is that a byte mode RCPU UART receiver actually has nearly four byte times to respond to the interrupt, a
set. Writing a one to this bit clears all the error flags. Writing a truly massive latency were it to ever occur!
zero has no effect.
1 BYTE_INT When this bit is set, the RCPU is interrupted after each byte is 3
received. When this bit is clear, it is interrupted when four bytes Joystick Interface
have been received.
2 RX_INT Ivsvggz ;?;elz;ta:ts ﬂs]t;t,r:;: legrm’i[ﬁgs ‘;[; g:f.r?;j,t\)‘l.?dlrﬁg ;T::Sug} Puck has fqur outputs which together control four external TTL ICs to provide the joystick interface. There
this bit is reflected by a read. are two registers
3 TX_INT When this bit is set, transmitter interrupts are enabled. An = =
interrupt is generated whenever the transmit buffer is empty. The JOY1 Joystick register F14000 RW
TX_BYTE bit below controls whether this is after one or four . L . . .
bytgs. The status of this bit is reflected by a read. When read the]oystlck' input buffers are enabled {ind the data reflects the state of the sixteen joystick
4 NOPAR When this bit is set, the receiver no longer expects to receive a inputs. Output JOYLO is asserted (active low) during the read.
parity bit. This allows the standard 8-bit, no parity, one stop bit When written the low eight data bits are latched into the joystick output latch. Output JOYL2 is asserted
format to be received. It has no effect ion the transmitter, so to (active low) during the write. The most significant bit (15) is used to enable the joystick outputs. This bit is
transmit this format you should ensure the transmitted parity bit cleared (disabled) by reset. Output JOYL3 is the inverse of the value in bit 15.
corresponds to a stop bit. This bit also applies to the 10 interface.
The status of this bit is reflected by a read. Joy2 Button register F14002 RW
5 TX_BYTE Set this bit to transmit single bytes. If this is set only the first byte
is transmitted. The status of this bit is reflected by a read. When read the button input buffer is enabled and the data reflects the state of the four button inputs.
6 RCPU_TRANSMIT Set this bit if the RCPU is to control the UART transmit interface. Output JOYL1 is asserted (active low) during the read.
If this bit is clear, the normal 10 interface controls transmit. The There are two joystick connectors each of which is a 15 pin high density ‘D' socket. The pinouts are as
status of this bit is reflected by a read. follows:
7 RCPU_RECEIVE Set this bit if the RCPU is to control the UART receive interface.
If this bit is clear, the normal 10 interface controls receive. The PIN J5 J6
status of this bit is reflected by a read. 1 JOY3 JOY4
16 OVERRUN_ERROR This error flag indicates that the four byte receive buffer has 2 JOY2 JOYS
overflowed and receiver data has been lost. This bit is read only. 3 Jovy1 JOY6
17 FRAMING_ERROR This error flag indicates that a framing error occurred on received 4 JOYO JOY7
data. The UART will cease operation until the error is cleared. 5 NC NC
This bit is read only. 6 BO/LP B2
18 PARITY_ERROR This error flag indicates that received data has a parity error. The 7 5VDC 5VDC
UART will cease operation until the error is cleared. This bit is 8 NC NC
read only. 9 GND GND
19-21 BYTES_IN_BUF This value indicates how many bytes are present in the UART 10 B1 B3
receive data buffer. Valid values are 0-4. Even if the receiver is in 11 JOY11 JOY15
byte modt_a (BYTE_INT set), furth(_ar values_ will be added to the 12 JOY10 JOY14
buffer until _the_ long overflows. This value is read only. . 13 J0Y9 JOY13
22-24 BYTES_LAST_READ This value indicates how many bytes were present the last time 14 JOY8 JOY12
the receive data buffer was read. As it is not possible to read the 15 NC NC
receive data buffer and the BYTES_IN_BUF value atomically, the
counter is latched whenever a read occurs and the value stored
here. The JOYx signals correspond to bit x on the joystick port. All the joystick signals can be used as inputs.
25 RX_INT_FLAG The current interrupt was caused by the receiver. This bit is read- Signals JOYO to JOY7 can also be used as outputs. The direction of these signals is determined by bit15
only. of the joystick output port. If bit 15 is set JOYO0 to JOY7 are outputs. All joystick signals are pulled up with
26 TX_INT_FLAG The current interrupt was caused by the transmitter. This bit is resistors. Signals BO to B3 are bits 0 to 3 on the button port. The LP signal is a light-gun input, a high
read-only. level on this input transfers the current horizontal and vertical counts to the light-pen registers.
RCPU UART Data F18140 Read/write CaneEl AL rtesE 10 DEatEs

This long location contains a long write-only transmit data buffer, and a long read-only receive data buffer.
For a full discussion of the UART, refer to the section on it below. These buffers are big-endian, this
means that the byte order of transmission or reception is as follows.

Bits Order
24-31 first byte
16-23 second byte
8-15 third byte
0-7 fourth byte

If the interface is being operated in byte mode, then the byte should be read from or written to bits 0-7.
However, note that if read overflow occurs (which is not flagged as an error in any case until the buffer
contains four bytes), then the bytes will be shifted up in the long buffer as they are received. This means

Puck has six general purpose 10 decode outputs which are asserted (active low) in the following address
ranges.

GPIOO0 F14800-F14FFFh CD-interface
GPIO1 F15000-F15FFFh DMA ACK
GPIO2 F16000-F16FFFh Cartridge
GPIO3 F17000-F177FFh

GPIO4 F17800-F17BFFh

GPIO5 F17C00-F17FFFh Paddle Interface

The term "General Purpose" is a misnomer because most of the outputs are reserved.

A

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

TRUR_

CONFIDENTIAL 26 October, 2002

Page 76 THIS DOCUMENT IS WORK IN PROGRESS

Midsummer Technical Reference Manual — Revision 6

Appendices

The COBWEB Development Board

All development systems currently being shipped (on August 1995), are Cobweb boards. You should read
these notes before using it.

The Cobweb board is a prototype development board for Midsummer which has the Oberon f3-test ASIC
from Midsummer and the Jerry ASIC from Jaguar One. This system is intended to allow some software
development to start before the availability of Puck. The Oberon B-test ASIC is not the final production
version of Oberon, and is both slower and buggier then the production silicon.

Developers using this board should be aware of the following limitations and other issues:
1. The Oberon B-test ASIC only runs at 26.6 MHz, and even at this speed requires forced cooling.

2. Because Jerry is fitted, the Jaguar One DSP load and store limitations still apply (and all other
Jerry/DSP bugs).

This is a development board - there are likely to be un-discovered bugs in it.

4. The development environment currently available is that of Jaguar One (but it does all seem to
work!).

5. The video and audio quality may be poor

Because Puck is not present, the following features described in this document are not present:
1. The RCPU

2. The DSP enhancements over Jaguar One, including the PCM engine

3. The CD DMA channel

The GPU and Blitter enhancements, including texture mapping, are all present. Please refer to the bugs
list below, or a more up-to-date version from Atari, for problems present in this Oberon p-test ASIC.
These should not be present in the production version.

Pixel Organisation
One side effect of the big or little endian philosophies is with regard to the organisation of pixels within a
phrase.

In the little-endian system, the left-most pixel is always the least significant. In a phrase of data the left-
most pixel includes bit 0. In byte address terms, this is in byte 0.

|o 7|8 15|: :|48 55|56 63|
left right

In the big-endian system, the left-most pixel is always the most significant. The left-most pixel therefore
always includes bit 63. In byte address terms this is stored in byte 0.

|63 56|55 48|: ::|15 8|7 0|
left right

Consider an eight bit per pixel mode:

- in pixel mode, the left-most pixel in both systems is at byte address 0.

- in phrase mode, the little-endian left hand pixel is on bits 0-7, the big-endian left hand pixel is
on bits 56-63.

(these modes refer to Blitter operation, which is described elsewhere)

This difference therefore affects operations that involve addressing pixels within a phrase when
transferring a whole phrase at once (Blitter phrase mode).

Oberon and Puck Bugs List

Data Organisation - Big and Little Endian

The Jaguar system is intended to be used in either a little-endian, e.g. Intel 80x86, or big-endian, e.g.
680x0, environment. The difference between these two systems is to do with the way in which bytes of a
larger operand are stored in memory. There is potential for considerable confusion here, so this section
attempts to explain the differences.

When storing a long-word in memory, a big-endian processor considers that the most significant byte is
stored at byte address 0, while a little-endian processor considers that the most significant byte is stored
at byte address 3. When both 32 bit processors are fitted with 32 bit memory this is not an issue for the
memory interface, as the concept of byte address has no meaning; where it does become a problem is
when the data path width is narrower than the operand width.

This document adopts the big-endian convention and Motorola operand ordering convention. Little-endian
and Intel operand conventions could equally well have been applied.

10 Bus Interface

The 10 Bus Interface is a 16 bit interface. Therefore, 32 bit data such as addresses will be presented
differently between the little-endian and big-endian systems. What happens, in effect, is that the sense of
Al is inverted between the two systems. A big-endian system will see the high word of long-word at the
low address, a little-endian system will see the high word at the high address.

Co-Processor Bus Interface

As the co-processor bus interface is 64 bits wide, there is no problem regarding big and little endian
systems, although graphics processor programmers should always use byte, word, or long-word transfers
as appropriate to the operand size to avoid having to be aware of whether the CPU is big or little endian.

“If we shadows have offended,
Think but this, and all is mended,
That you have but slumber'd here

While these visions did appear.

And this weak and idle theme,

No more yielding but a dream,

Gentles, do not reprehend:
if you pardon, we will mend:”

Act V. Scene 1.
This document lists the known bugs in the Oberon and Puck devices. This is revision code 3 silicon.
Level

3 This bug completely prevents some part of the ASIC from operating. Some functionality
cannot be demonstrated, and further bugs could be obscured.

2 This bug can be fixed to some extent by a software or hardware work-around. The
functionality may still be impaired but is demonstrable.

1 This bug can be fixed by a simple software or hardware work-around with no significant
loss of functionality or performance.

The reference to hardware or software in bugs indicates who it affects.

Oberon Bugs

1 Carried Over 68K Bus Interface Bugs

These bugs we inadvertently carried over from Tom:

Level 1 hardware

Description When the 68000 is slow to retract BGL and Oberon performs a very short bus cycle, it

can see the trailing edge of BGL at the start of the next BRL operation and erroneously
assume that it has the bus.

Work-round Filter BGL through a flip-flop set on the falling edge of BGL, and cleared synchronously

A

26 October, 2002 CONFIDENTIAL ATART

TRUR_

© 1992, 1993, 1994, 1995 ATARI Corp

Midsummer Technical Reference Manual — Revision 6 THIS DOCUMENT IS WORK IN PROGRESS

Page 77

Level
Description
Work-round

2

Level
Description

Work-round

3

Level
Description

Work-round

4

Level
Description

Work-round

by BGACKL.

1 hardware
Oberon can retract BRL too quickly.
Stretch the trailing edge of BRL by one clock cycle.

GPU: DMA from the register file does not give the right data

1 software

If the DMA engine is set to transfer the register file into external memory, it does not read
the data correctly (this only works anyway if GO is clear).

Read the data by any other practical means.

GPU: DMA into the GPU RAM fails if the bus is lost

2 software

When the DMA engine is transferring data into GPU RAM, and the bus is lost during the
transfer, then values van be repeated within GPU RAM. This means that the data is no
use.

Ensure that the DMA engine does not lose the bus during the transfer. This can be done

by disabling refresh across the transfer, and ensuring that no higher priority bus master
can use the bus - refer to the bus arbitration description on page Bus Arbitration5.

Blitter: Interpolated Pixel Math Errors

2 software

When the blitter is anti-aliasing texture data, it appears that the interpolation math can
cause the values to be one less than they should be under some circumstances. This
results in a visible problem when CRY color values are reduced by one, even when
mixing four pixels with the same color value.

Only certain textures show the problem, so either choose your textures carefully, or do
not use the anti-aliasing.

N TN

© 1992, 1993, 1994, 1995 ATARI Corp. ATART

CONFIDENTIAL

26 October, 2002

